Abstract:
Disclosed is a method and associated apparatus for measuring a characteristic of interest relating to a structure on a substrate. The method comprises calculating a value for the characteristic of interest directly from the effect of the characteristic of interest on at least the phase of illuminating radiation when scattered by the structure, subsequent to illuminating said structure with said illuminating radiation.
Abstract:
The disclosure relates to measuring a parameter of a lithographic process and a metrology apparatus. In one arrangement, radiation from a radiation source is modified and used to illuminate a target formed on a substrate using the lithographic process. Radiation scattered from a target is detected and analyzing to determine the parameter. The modification of the radiation comprises modifying a wavelength spectrum of the radiation to have a local minimum between a global maximum and a local maximum, wherein the power spectral density of the radiation at the local minimum is less than 20% of the power spectral density of the radiation at the global maximum and the power spectral density of the radiation at the local maximum is at least 50% of the power spectral density of the radiation at the global maximum.
Abstract:
An inspection apparatus, method, and system are described herein. An example inspection apparatus includes an optical system and an imaging system. The optical system may be configured to output an illumination beam incident on a target including one or more features, the illumination beam polarized with a first polarization when incident on the target. The imaging system may be configured to obtain intensity data representing at least a portion of the illumination beam scattered by the one or more features, where the portion of the illumination beam has a second polarization orthogonal to the first polarization. The inspection apparatus may be further configured to generate image data representing an image of each of the feature(s) based on the intensity data, and determine a measurement of a parameter of interest associated with the feature(s) based on an amount of the portion of the illumination beam having the second polarization.
Abstract:
A metrology tool for determining a parameter of interest of a structure fabricated on a substrate, the metrology tool comprising: an illumination optical system for illuminating the structure with illumination radiation under a non-zero angle of incidence; a detection optical system comprising a detection optical sensor and at least one lens for capturing a portion of illumination radiation scattered by the structure and transmitting the captured radiation towards the detection optical sensor, wherein the illumination optical system and the detection optical system do not share an optical element.
Abstract:
A substrate has first and second target structures formed by a lithographic process. Each target structure has a two-dimensional periodic structure formed in a single layer using first and second lithographic steps. The first target structure has features defined in the second lithographic step displaced relative to features defined in the first lithographic step by a first bias amount. The second target structure has features defined in the second lithographic step displaced relative to features defined in the first lithographic step by a second bias amount. An angle-resolved scatter spectrum of the first target structure and an angle-resolved scatter spectrum of the second target structure is obtained. A measurement of a parameter of a lithographic process is derived from the measurements using asymmetry found in the scatter spectra of the first and second target structures.
Abstract:
An inspection method determines values of profile parameters of substrate patterns. A baseline substrate with a baseline pattern target (BP) is produced that has a profile described by profile parameters, for example CD (median critical dimension), SWA (side wall angle) and RH (resist height). Scatterometry is used to obtain first and second signals from first and second targets. Values of differential pattern profile parameters are calculated using a Bayesian differential cost function based on a difference between the baseline pupil and the perturbed pupil and dependence of the pupil on pattern profile parameters. For example, the difference is measured between a baseline process and a perturbed process for stability control of a lithographic process. Fed-forward differential stack parameters are also calculated from observations of stack targets on the same substrates as the pattern targets.
Abstract:
A method of determining exposure dose of a lithographic apparatus used in a lithographic process on a substrate, the method comprising the steps: (a) receiving a substrate comprising first and second structures produced using the lithographic process; (b) detecting scattered radiation while illuminating the first structure with radiation to obtain a first scatterometer signal; (c) detecting scattered radiation while illuminating the second structure with radiation to obtain a second scatterometer signal; (d) using the first and second scatterometer signals to determine an exposure dose value used to produce said first and second structures wherein the first structure has a first periodic characteristic with spatial characteristics and yet at least another second periodic characteristic with spatial characteristics designed to be affected by the exposure dose and the second structure has a first periodic characteristic with spatial characteristics and yet at least another second periodic characteristic with spatial characteristics designed to be affected by the exposure dose wherein the exposure dose affects the exposure dose affected spatial characteristics of the first and second structures in a different manner.
Abstract:
A method of determining a parameter of a patterning process, the method including: obtaining a detected representation of radiation redirected by a structure having geometric symmetry at a nominal physical configuration, wherein the detected representation of the radiation was obtained by illuminating a substrate with a radiation beam such that a beam spot on the substrate was filled with the structure; and determining, by a hardware computer system, a value of the patterning process parameter based on optical characteristic values from an asymmetric optical characteristic distribution portion of the detected radiation representation with higher weight than another portion of the detected radiation representation, the asymmetric optical characteristic distribution arising from a different physical configuration of the structure than the nominal physical configuration.
Abstract:
A substrate has first and second target structures formed thereon by a lithographic process. Each target structure has two-dimensional periodic structure formed in a single material layer on a substrate using first and second lithographic steps, wherein, in the first target structure, features defined in the second lithographic step are displaced relative to features defined in the first lithographic step by a first bias amount that is close to one half of a spatial period of the features formed in the first lithographic step, and, in the second target structure, features defined in the second lithographic step are displaced relative to features defined in the first lithographic step by a second bias amount close to one half of said spatial period and different to the first bias amount. An angle-resolved scatter spectrum of the first target structure and an angle-resolved scatter spectrum of the second target structure is obtained, and a measurement of a parameter of a lithographic process is derived from the measurements using asymmetry found in the scatter spectra of the first and second target structures.
Abstract:
A method of determining a parameter of a patterning process, the method including: obtaining a detected representation of radiation redirected by a structure having geometric symmetry at a nominal physical configuration, wherein the detected representation of the radiation was obtained by illuminating a substrate with a radiation beam such that a beam spot on the substrate was filled with the structure; and determining, by a hardware computer system, a value of the patterning process parameter based on optical characteristic values from an asymmetric optical characteristic distribution portion of the detected radiation representation with higher weight than another portion of the detected radiation representation, the asymmetric optical characteristic distribution arising from a different physical configuration of the structure than the nominal physical configuration.