Abstract:
A support table for a lithographic apparatus, the support table having a support section and a conditioning system, wherein the support section, the conditioning system, or both, is configured such that heat transfer to or from a substrate supported on the support table, resulting from the operation of the conditioning system, is greater in a region of the substrate adjacent an edge of the substrate than it is in a region of the substrate that is at the center of the substrate.
Abstract:
A support table for a lithographic apparatus, the support table having a support section and a conditioning system, wherein the support section, the conditioning system, or both, is configured such that heat transfer to or from a substrate supported on the support table, resulting from the operation of the conditioning system, is greater in a region of the substrate adjacent an edge of the substrate than it is in a region of the substrate that is at the center of the substrate.
Abstract:
An object table to support an object, the object table having a support body, an object holder to hold an object, an opening adjacent an edge of the object holder, and a channel in fluid communication with the opening via a passageway, wherein the channel is defined by a first material which is different to a second material defining the passageway.
Abstract:
A sensor for use in lithographic apparatus of an immersion type and which, in use, comes into contact with the immersion liquid is arranged so that the thermal resistance of a first heat path from a transducer of the sensor to a temperature conditioning device is less than the thermal resistance of a second heat flow path from the transducer to the immersion liquid. Thus, heat flow is preferentially towards the temperature conditioning device and not the immersion liquid so that temperature-induced disturbance in the immersion liquid is reduced or minimized.
Abstract:
A sensor for use in lithographic apparatus of an immersion type and which, in use, comes into contact with the immersion liquid is arranged so that the thermal resistance of a first heat path from a transducer of the sensor to a temperature conditioning device is less than the thermal resistance of a second heat flow path from the transducer to the immersion liquid. Thus, heat flow is preferentially towards the temperature conditioning device and not the immersion liquid so that temperature-induced disturbance in the immersion liquid is reduced or minimized.
Abstract:
A support table for a lithographic apparatus, the support table having a support section and a conditioning system, wherein the support section, the conditioning system, or both, is configured such that heat transfer to or from a substrate supported on the support table, resulting from the operation of the conditioning system, is greater in a region of the substrate adjacent an edge of the substrate than it is in a region of the substrate that is at the center of the substrate.
Abstract:
A support table for a lithographic apparatus, the support table having a support section and a conditioning system, wherein the support section, the conditioning system, or both, is configured such that heat transfer to or from a substrate supported on the support table, resulting from the operation of the conditioning system, is greater in a region of the substrate adjacent an edge of the substrate than it is in a region of the substrate that is at the center of the substrate.
Abstract:
A lithographic apparatus is disclosed that includes a substrate table configured to support a substrate on a substrate supporting area and a heater and/or temperature sensor on a surface adjacent the substrate supporting area.
Abstract:
A support table configured to support a substrate, the support table having a support section to support a substrate and a conditioning system to supply heat energy to and/or remove heat energy from the support section, wherein the conditioning system comprises a plurality of conditioning units that are independently controllable.
Abstract:
A method of unloading an object from a support table, the object clamped to the support table during an exposure process by: applying a first pressure to a central region of the support table under a central portion of the object; and applying a second pressure to a peripheral region of the support table under a peripheral portion of the object, wherein during clamping the first pressure and the second pressure are controlled such that liquid is retained between the object and a seal member that is positioned radially between the central region and the peripheral region at an upper surface of the support table and protrudes towards the object, the method including: increasing the first pressure towards ambient pressure; removing at least some of the liquid retained between the object and the seal member by decreasing the second pressure; and increasing the second pressure towards the ambient pressure.