Abstract:
A magnetic resonance system (MRS), including a magnetic resonance device (MRD), comprising an open bore, the MRD at least partially contained in an envelope comprising in its circumference at least one recess; and, a cart made of MRI-safe material, comprising a base and at least one incubator above the base. The MRS is operative in a method of magnetic resonance imaging of neonates, comprising the steps of obtaining the MRS, the incubator is accommodated by a neonate; and inserting at least a portion of the cart into the MRD such that at least a portion of the incubator is inserted into the open bore and at least a portion of the base into at least one recess.
Abstract:
An incubator including a plurality of panels. At least one of the panels, or portion thereof, is a multi functional panel that is reversibly connected to at least one of the plurality of panels. The incubator can be opened and closed. In a closed configuration, the incubator sealingly encloses an internal environment. In an open configuration, the multi-functional panel is deployable as a countertop.
Abstract:
A patient transport incubator (PTI) suitable for MRI device having an open bore; the PTI comprises an inner volume having a first set of dimensions, adapted by means of shape and size to accommodate a patient or accommodate at least a portion of an MRI-compatible neonate's cradle, the inner volume is further covered by an envelope having a second set of dimensions, adapted by means of shape and size to be temporarily introduced within the open bore; wherein at least a portion of the envelope comprises MRI safe thermo-isolating and noise reducing foam. The invention will increase the safety and comfort of MRI scanning of neonates.
Abstract:
A system of performing inline measurements of flow rate, density, and rheology of a flowing fluid. The system includes a rheology measurement subsystem, a density measurement subsystem, and a pressure sensor for measuring the pressure of the test fluid within the vertical tube at a location y2 downstream from y1 and displaced vertically from y1 by a distance Δh.
Abstract:
The present invention includes a system and method for generating images of at least one unhyperpolarized portion of a specimen by indirectly hyperpolarizing the at least one portion by irradiating the unhyperpolarized portion by radiation emitted from the de-excitation of excited nuclei of a hyperpolarized substance. The hyperpolarized substance is located in proximity to the specimen. Typically, the images are generated by an MRI/NMR device.
Abstract:
An incubator with a canopy that selectively controls an amount of light that is transmitted into it. The incubator includes: at least one sensor configured to detect light transmitted into the incubator's capacity and to further convert the transmitted light into electrical current. The incubator also includes a canopy characterized by at least one portion, the portion comprises one or more smart incubator's glass (SIG); where the SIG is adapted to at least partially reduce or increase the light transparency via the portion in accordance with the sensor's electrical current.
Abstract:
An incubator with a double glazed wall that promotes regulation of sound pressure levels and temperature levels the incubator, using an insulated glass unit. The canopy of the incubator has at least one insulated glass unit. This unit includes at least one first inner glass and at least one second external glass. The inner and external glasses are spaced by a spacer, and are characterized by an inner atmosphere confined within the canopy and an external atmosphere.
Abstract:
An encapsulatable life support mechanism (ELSM) for an analyzed animal, including: a cradle or bed adapted by means of size and shape to accommodate the animal; an anesthetization gas mask (AGM) characterized by a cup with conic cross section, comprising a plurality of apertures located at the outer circumference of the cup; a fluid supplying mechanism (FSM) in which the AGM is placed, the FSM is in a continuous fluid communication with (i) an anesthetization gas inlet positioned outside the ELSM and an outlet located within the ELSM; (ii) an air suction scavenging device positioned outside the ELSM and a mask and an air suction outlet located within the ELSM; and a plurality of (iii) air conditioning tubes; and an airtight shell enveloping the same. The airtight ELSM prevent leakage of anesthetization gas.
Abstract:
A magnetic shielding mechanism for preventing penetration of metallic objects through an aperture, towards the open bore of an magnetic resonance imaging device, where the magnetic field is maximized. The magnetic resonance imaging device produces a fringing magnetic field that decreases with increasing distance (L) from the aperture. The mechanism includes at least one magnet with a magnetic field. The mechanism is affixed at a distance from the aperture of magnetic resonance imaging device.
Abstract:
A standard of care protocol for preventing gossypiboma during surgery. The protocol including: selecting one or more surgical items from a group consisting of: non-metallic surgical items marked with detectable metal indicia; metallic surgical items; metallic surgical items marked with the detectable metal indicia; providing one or more metal detectors in connection with the selected at least one of the surgical items; and identifying, using at least one metal detector, detectable metal items in the patient.