摘要:
The signals from adjacent transmitters reinforce one another. As a result of this over-the-air combining, signal quality is improved in the network and especially at or near cell boundaries. The present invention provides a graduated single frequency network (GSFN) wherein transmitters in cells throughout a geographic area cooperate to broadcast data to user terminals throughout the geographic area, and adjacent transmitters transmit signals that substantially reinforce one another. When transmitting the data, transmitters in certain adjacent cells throughout the geographic area may employ slightly different transmit parameters to provide slightly different transmission signals. The transmission signals used to transmit the data may be varied in a graduated fashion throughout the geographic area, wherein even when there is a difference in the transmission signals of transmitters in adjacent cells, the transmission signals reinforce one another despite being different.
摘要:
The present invention allows a wireless communication system, such as a base station or user element to iteratively select precoding sets to apply to signals for transmission based on effective channel conditions.
摘要:
Data is scrambled at a transmitter according to one of a number of predetermined scrambling sequences which are associated with a particular one of a number of predetermined transmit antenna diversity schemes (i.e., a specific number of transmit antenna ports). Received data is decoded using one or more of the known transmit antenna diversity schemes and the scrambled data is descrambled according to a corresponding descrambling sequence (related to the scrambling sequence). Based on the descrambled data, the receiver determines which transmit antenna, diversity scheme (i.e., the number of antenna ports) is used by the transmitter. In one specific embodiment, CRC parity data is scrambled in the transmitter and the receiver descrambles the recovered CRC parity data according to a descrambling sequence, computes CRC parity data from the received data, and compares the descrambled CRC parity data to the newly computed CRC parity data.
摘要:
The present invention is a method and system for supporting a beamforming antenna system in a multiple user mobile broadband communication network including a process for setting and adjusting the magnitude and phase of the signal to user equipment from each antenna. Namely, the present invention supports the communication of power signal values or levels to user equipment in a manner that keeps pace with the rapid variations of the power levels that occur in the dynamic scheduling of transmissions on the cell site. The present invention satisfies this need for an improved signal strength signaling to user equipment for the situation where multiple users are located on the cell site.
摘要:
In accordance with an embodiment, a method of operating a controller in a wireless communication system includes receiving channel feedback information from a communications node, adjusting the channel feedback information based on a measurement of interference from neighboring controllers, adjusting transmit parameters of the controller using the adjusted channel feedback information, and transmitting to the communications node using the adjusted transmit parameters.
摘要:
In order to minimize the control signaling overhead associated with transmitting CQI data from mobile stations to base stations in wireless communication networks supporting MU-MIMO, the CQI during MU-MIMO operation is estimated based on SU-MIMO CQI data, mobile station geometry data, and mobile station PMI (Precoding Matrix Index) data. More particularly, the base station maintains and updates a knowledge pool that correlates geometry data and learned impact of interfering precoder data to degradation of CQI values responsive to switching from SU-MIMO operation to MU-MIMO operations. Then, when the base station switches from SU-MIMO operation to MU-MIMO operation, it consults the knowledge pool to predict the degradation in CQI and subtracts them from the known, pre-switching SU-MIMO CQI feedback data for each relevant mobile station to predict the post-switching MU-MIMO CQIs for that mobile station.
摘要:
Some embodiments of the present disclosure provide for use of a linear chirp signal as a basis for a sensing signal. Modification of the linear chirp signal by a signature function can allow a receiver of the sensing signal to determine an identity for a source of the sensing signal. Accordingly, upon processing the received sensing signal to obtain path parameter estimates, the receiver can direct a transmission of an indication of the path parameter estimates to the source of the sensing signal. Aspects of the present application relate to performing multi-node, multi-path channel estimation on the basis of processing the received sensing signal. Conveniently, the processing is performed with low complexity.
摘要:
The present disclosure relates, in part, to non-terrestrial communication systems, and in some embodiments to the integration of terrestrial and non-terrestrial communication systems. Non-terrestrial communication systems can provide a more flexible communication system with extended wireless coverage range and enhanced service quality compared to conventional communication systems. A method representative of aspects of the present application includes receiving, by an apparatus connected in a first sub-system, from a radio access network, configuration information for performing a channel condition measurement on a second sub-system, reporting, by the apparatus to the radio access network, channel condition measurement of a downlink reference signal received from the second sub-system, transmitting, by the apparatus, a wireless transmission to the second sub-system responsive to the channel condition measurement meeting a predefined condition.
摘要:
A first user equipment (UE) is configured to receive from a base station a signaling comprising indication of one or more time-frequency resources and an indicator indicating a time gap, and transmit a transport block (TB) to a second UE using the one or more time-frequency resources. For each of the time-frequency resources, the first UE monitors a hybrid automatic repeat request (HARQ) feedback from the second UE, using a physical sidelink feedback channel (PSFCH) resource; and transmits to the base station a HARQ feedback report signal based on the HARQ feedback or absence thereof, in a physical uplink control channel (PUCCH), using a single PUCCH resource determined based on the time gap from a last one of the PSFCH resources.
摘要:
Systems and methods are disclosed for providing H-ARQ transmissions in respect of a set of horizontal code blocks are combined in a code. Retransmissions contain vertical parity check blocks which are determined from verticals from the set of horizontal code blocks. Once all the vertical parity check blocks have been transmitted, a new set may be determined after performing interleaving upon either the content of the horizontal code blocks, in the case of non-systematic horizontal code blocks, or over the content of encoder input bits in the place of systematic horizontal code blocks. The interleaving may be bitwise or bit subset-wise. The retransmissions do not contain any of the original bits. In the decoder, soft decisions are produced, and nothing needs to be discarded; decoding will typically improve with each retransmission.