Abstract:
A rack-mountable computer system enables an airflow that cools components in an upstream portion of the computer system interior to be cooled through mixing with a bypass airflow downstream of the components in the upstream portion. The mixed airflow can cool components in a downstream portion of the interior. The bypass airflow is directed by a bypass plenum that is unencompassed by the separate plenum that directs the airflow to cool the upstream portion components. The bypass plenum can be at least partially established by an external surface the computer system and one or more external structures, including an external surface of an adjacently mounted computer system. Relative flow rates through the separate plenums can be adjusted, via flow control elements, to separately control heat removal from components upstream and downstream of the air mixing, based at least in part upon air temperatures in the separate interior portions.
Abstract:
A server placement controller determines a placement location for a custom server based on infrastructure support system requirements of the custom server and based on infrastructure support system capacities at respective unoccupied slots of a server mounting structure of a data center. In some embodiments, a server placement controller may utilize a hierarchical optimization process to select a placement location for a custom server, wherein the selected placement location meets the requirements of the custom server while also optimizing use of one or more infrastructure support systems, such as power infrastructure support system, a networking infrastructure support system, a cooling infrastructure support system, or other infrastructure support systems of a data center.
Abstract:
A near real-time custom server system includes robots deployed at a data center location and a server assembly controller configured to receive requests for near-real time custom servers. The requests may specify one or more characteristics for the custom servers and the server assembly controller may cause the robots deployed at the data center location to assemble the custom servers and install the custom servers in a server mounting structure of the data center in near real-time. For custom server types requested in lower volumes, the custom servers may be assembled autonomously by respective ones of the robots; and for custom server types requested in higher volumes, the custom servers may be assembled by respective groups of robots working in coordination with one another via an assembly line.
Abstract:
An array of backup battery units that can be reconfigured to provide different currents and/or voltages depending upon load conditions. The backup battery units are attached to a bus and can be reconfigured, for example, between a configuration in which the battery backup units are wired in series to a configuration where the battery backup units are wired in parallel. Additional embodiments are directed to an array of backup battery units that can isolate a single battery backup unit so that the battery backup unit can be removed from the bus while the bus is under load. The removed battery backup unit can then be tested, maintained, and/or replaced.
Abstract:
A rack-mountable computer system enables an airflow that cools components in an upstream portion of the computer system interior to be cooled through mixing with a bypass airflow downstream of the components in the upstream portion. The mixed airflow can cool components in a downstream portion of the interior. The bypass airflow is directed by a bypass plenum that is unencompassed by the separate plenum that directs the airflow to cool the upstream portion components. The bypass plenum can be established by one surface of a component that supports one or more heat-producing components in the separate plenum, including an underside of a circuit board mounted in the interior. Relative flow rates through the separate plenums can be adjusted, via flow control elements, to separately control heat removal from components upstream and downstream of the air mixing, based at least in part upon air temperatures in the separate interior portions.
Abstract:
Systems and methods for handling battery backup resources in a computer system differently in certain situations, such as catastrophic events, based upon an assigned layer of the datacenter components to which the battery backup resource provides backup power. The layer can be based, for example, on criticality of the resource to the system. Less critical layers can shed load or gracefully shut down to respond to the event, and the battery resources can be reallocated or reconfigured to provide battery power to the more critical layers.
Abstract:
A method of managing power to electrical systems in a rack includes pooling power from power supply mechanisms in two or more slots of a rack. Power is supplied from the pooled power to electrical systems in one or more slots in the rack. Power supply mechanisms are activated or deactivated from the pooled power based on conditions of the power supply mechanisms or the electrical systems receiving power from the pooled power supply system.
Abstract:
A system for storing data includes a discrete cooling module that can enable discrete cooling of mass storage devices installed in the chassis interior of a data storage module coupled to a rack. The discrete cooling module includes an air moving device and an air cover. The air moving device can induce and airflow through the chassis interior of the data storage module to remove heat from heat producing components of mass storage devices installed in the chassis interior. The air cover directs the airflow through the chassis interior. The discrete cooling module can isolate rotational vibrations generated by the air moving device from the mass storage devices installed in the chassis. Partial isolation can include indirectly coupling the discrete cooling module to the chassis via directly coupling with the rack.
Abstract:
Information about firmware modules for a power unit (e.g., a battery backup unit or a power supply unit) can be downloaded, along with the firmware modules themselves. The firmware modules, which may constitute less than a complete firmware re-flash, can be used to update firmware of the power unit from a first version type to a second version type.
Abstract:
A rack computer system can provide data indicating electrical power consumption by separate sets of the mass storage devices, including separate individual mass storage devices, of the rack computer system. A power sensor can be electrically coupled to a power transmission line for each mass storage device. The power sensor can be coupled to the power transmission line externally to the mass storage device. The power sensor can be an internal power sensor of the mass storage device, where a mass storage device microcontroller transmits internally-generated data to an external power monitoring system. A microcontroller can transmit the data to a baseboard management controller via a side-band connection between the mass storage device and the controller. The data can be transmitted via an in-band connection between a baseboard management controller and an instance of firmware which accesses internally-generated data from mass storage device microcontrollers.