Abstract:
Systems, methods, and computer readable media to perform color matching between a source color profile and a user-selected color profile are described. Various embodiments receive user input to select a color profile to output source content to an output device, where the source content is associated with a source color profile. Various embodiments set the selected color profile as a target color profile and subsequently perform a first device-dependent color space conversion that converts the source color profile to the target color profile and uses the conversion to generate a target content from the source content. A second device-dependent color space conversion can then be performed to convert the target color profile to a device color profile and uses the conversion to generate output device content from the target content.
Abstract:
Scalable color balancing techniques for processing images to be presented on displays are described. One technique includes receiving ambient light color information from an ambient light sensor and input image data to be presented via a display coincident with receiving the ambient light color information. The display may have a first white point at a time prior to receiving the input image data. The technique may include determining a second white point for the display based on the input image data and the ambient light color information. The first and second white points may differ from each other. The technique may also include generating one or more chromatic adaptation transforms (CATs) based on the white points. Output image data may be generated based on applying the one or more CATs to the input image data. The output image data may be presented via the display. Other embodiments are described.
Abstract:
An electronic device may have a display such as a liquid crystal display. The display may have an array of pixels that display images to a user. Backlight structures may provide the array of pixels with backlight illumination at a backlight illumination level. The backlight structures may have a light source with an array of light-emitting diodes and photoluminescent material that is pumped by pump light from the light-emitting diodes. The backlight illumination may experience color variations as a function of the backlight illumination level. Circuitry in the electronic device may be used to implement a backlight level color compensator. The backlight level color compensator may apply color correction factors to the image data of the displayed images to compensate for variations in color of the image data due to variations in backlight illumination level and operating temperature.
Abstract:
An electronic device may include a display having an array of display pixels. Storage and processing circuitry may generate display data for the display in an RGB input color space. The display may display the display data in an RGBW output color space. Display control circuitry may use sets of predetermined conversion factors to convert display data from the RGB input color space to the RGBW output color space without requiring conversion to a device-independent color space. Each set of predetermined conversion factors may be associated with a color in a set of predetermined colors. Using the sets of predetermined conversion factors, the display control circuitry may convert RGB values in the input color space to RGBW values in the output color space. The display control circuitry may supply data signals corresponding to the display data in the RGBW output color space to the array of display pixels.
Abstract:
Methods and apparatuses to varying the apparent brightness of a display are described. The change in apparent brightness is accompanied by unchanged in relative contrast, rendering a display with higher or lower brightness while maintaining contrast fidelity. In exemplary embodiments, the signals for the middle tone levels are adjusted to increase or decrease the brightness intensity, while keeping constant the gamma correction. This maintains the relative contrast of images while rendering them at a different brightness. Implementations of the present process include an adjusted gamma correction lookup table, incorporated in the video card to modify the video signal before reaching the display. The present invention can be used for matching the brightness of two or more displays or to provide compensation for variations in display characteristics to ensure consistency in display brightness within a data processing model.
Abstract:
An electronic device may include a display having an array of display pixels and having display control circuitry that controls the operation of the display. The display control circuitry may adaptively adjust the display output based on ambient lighting conditions. For example, in cooler ambient lighting conditions such as those dominated by daylight, the display may display neutral colors using a relatively cool white. When the display is operated in warmer ambient lighting conditions such as those dominated by indoor light sources, the display may display neutral colors using a relatively warm white. Adapting to the ambient lighting conditions may ensure that the user does not perceive color shifts on the display as the user's vision chromatically adapts to different ambient lighting conditions. Adaptively adjusting images in this way can also have beneficial effects on the human circadian rhythm by displaying warmer colors in the evening.
Abstract:
A method and user interface for direct setting of black and white points. Black point is set using a slider and matching of gray shades. White point setting is performed by having a setting object move within a defined region, such as a square or circle, with the area where the setting object moves being adjusted dynamically based on the location of the setting object with respect to the defined region. When the area is the desired white, the setting is complete. Preferably the defined region has a varying color border to allow a reference for the user in moving the setting object. A more detailed setting of gray levels can be accomplished by providing a gray scale with reference points. Each reference point has an associated white point setting area, so that settings are developed for each reference point. Settings at other locations are determined by interpolation or extrapolation.
Abstract:
An optical test equipment/method for display testing that features parallel testing/sensing configuration that covers spectrum and colorimetric quantities with spatial resolution is disclosed. In one embodiment, a spectra-camera, which is a hybrid system consisting of both a single-point spectrometer and an imaging colorimeter, can be configured for concurrent display artifact and parametric testing. An aperture mirror with a hole in the middle splits an image of a test display into two parts. One part of the image passes through the hole and is directed to the spectrometer for display parametric testing. The rest of the image is reflected off the aperture mirror for concurrent display artifact testing with the colorimeter. In another embodiment, a beam splitter can be used instead of an aperture mirror. In yet another embodiment, the single-point high accuracy spectrometer can be used to calibrate the low accuracy imaging colorimeter.
Abstract:
A display panel is calibrated to a target white point. A maximum luminance value of the display panel is attenuated from a first luminance value associated with the target white point to a second luminance value based on an attenuation factor. The second luminance value is equal to or lower than the first luminance value. The display panel is re-calibrated based on a chromaticity of the target white point and the second luminance value to generate calibration data. The calibration data is flashed into memory associated with the display panel. During operation, the white point of the panel may be shifted from the target to a chromatically imbalanced (e.g., reddish) white point that may cause motion-induced color trail or color breakup artifacts. The attenuated second luminance value ensures the motion-induced color trail or color breakup artifacts are adequately masked when the panel is driven with the chromatically imbalanced white point.
Abstract:
First color response values of vertices of a first unit cube defined within a cubic color output space of the display device are measured. For each of first intermediate values determined based on the measured first color response values, RGB adjustment values are calculated by tetrahedral decomposition and interpolation so that each calculated RGB adjustment value is within a boundary defined by the first unit cube. When boundary defined by the first unit cube is reached, a second unit cube is defined within the cubic color output space, wherein a first vertex of a plurality of vertices of the second unit cube corresponds to the calculated RGB adjustment values of a previous intermediate value that is one of the first intermediate values. Second color response values corresponding to the plurality of vertices of the second unit cube except the first vertex are measured.