Phase-calibration for imaging flow cytometry

    公开(公告)号:US11275026B2

    公开(公告)日:2022-03-15

    申请号:US16861724

    申请日:2020-04-29

    Abstract: Aspects of the present disclosure include methods for phase correcting signals from a light detection system (e.g., in a flow cytometer). Methods according to certain embodiments include detecting light from a sample having particles in a flow stream with a light detection system that includes a brightfield photodetector configured to generate a brightfield data signal and a fluorescence detector configured to generate a fluorescence data signal and calculating a phase correction for the fluorescence detector based on the relative phase between the brightfield data signal and the fluorescence data signal. Systems having a processor with memory operably coupled to the processor having instructions stored thereon, which when executed by the processor, cause the processor to calculate a phase correction for a fluorescence detector based on a brightfield data signal and a fluorescence data signal from the fluorescence detector are also described. Integrated circuit devices (e.g., field programmable gate arrays) having programming for practicing the subject methods are also provided.

    Multi-Modal Fluorescence Imaging Flow Cytometry System

    公开(公告)号:US20210140870A1

    公开(公告)日:2021-05-13

    申请号:US17153527

    申请日:2021-01-20

    Abstract: In one aspect, the present teachings provide a system for performing cytometry that can be operated in three operational modes. In one operational mode, a fluorescence image of a sample is obtained by exciting one or more fluorophore(s) present in the sample by an excitation beam formed as a superposition of a top-hat-shaped beam with a plurality of beams that are radiofrequency shifted relative to one another. In another operational mode, a sample can be illuminated successively over a time interval by a laser beam at a plurality of excitation frequencies in a scanning fashion. The fluorescence emission from the sample can be detected and analyzed, e.g., to generate a fluorescence image of the sample. In yet another operational mode, the system can be operated to illuminate a plurality of locations of a sample concurrently by a single excitation frequency, which can be generated, e.g., by shifting the central frequency of a laser beam by a radiofrequency. For example, a horizontal extent of the sample can be illuminated by a laser beam at a single excitation frequency. The detected fluorescence radiation can be used to analyze the fluorescence content of the sample, e.g., a cell/particle.

    Light detection systems and methods of use thereof

    公开(公告)号:US10976236B2

    公开(公告)日:2021-04-13

    申请号:US16817103

    申请日:2020-03-12

    Abstract: Light detection systems for measuring light (e.g., in a flow stream) are described. Light detection systems according to embodiments include a light scatter detector, a brightfield photodetector and an optical adjustment component configured to convey light to the light scatter detector and to the brightfield photodetector. Systems and methods for measuring light emitted by a sample (e.g., in a flow stream) and kits having a light scatter detector, a brightfield photodetector and a beam splitter component are also provided.

    Flow cytometer with optical equalization

    公开(公告)号:US10823658B2

    公开(公告)日:2020-11-03

    申请号:US15992097

    申请日:2018-05-29

    Abstract: Aspects of the present disclosure include methods for producing an output laser beam having two or more angularly deflected laser beams (e.g., for irradiating a sample in a flow stream) with a predetermined intensity profile. Systems for practicing the subject methods having a laser, an acousto-optic device, a radiofrequency generator and a controller for adjusting the amplitude of the radiofrequency drive signals to produce an output laser beam of angularly deflected laser beams with a predetermined intensity profile are also described.

    Cell Sorting Using A High Throughput Fluorescence Flow Cytometer

    公开(公告)号:US20240410813A1

    公开(公告)日:2024-12-12

    申请号:US18746850

    申请日:2024-06-18

    Abstract: In one aspect, a method of sorting cells in a flow cytometry system is disclosed, which includes illuminating a cell with radiation having at least two optical frequencies shifted from one another by a radiofrequency to elicit fluorescent radiation from the cell, detecting the fluorescent radiation to generate temporal fluorescence data, and processing the temporal fluorescence data to arrive at a sorting decision regarding the cell without generating an image (i.e., a pixel-by-pixel image) of the cell based on the fluorescence data. In other words, while the fluorescence data can contain image data that would allow generating a pixel-by-pixel fluorescence intensity map, the method arrives at the sorting decision without generating such a map. In some cases, the sorting decision can be made with a latency less than about 100 microseconds. In some embodiments, the above method of sorting cells can have a sub-cellular resolution, e.g., the sorting decision can be based on characteristics of a component of the cell. In some embodiments in which more than two frequency-shifted optical frequencies are employed, a single radiofrequency shift is employed to separate the optical frequencies while in other such embodiments a plurality of different radiofrequency shifts are employed.

    Cell Sorting Using A High Throughput Fluorescence Flow Cytometer

    公开(公告)号:US20230076378A1

    公开(公告)日:2023-03-09

    申请号:US17953976

    申请日:2022-09-27

    Abstract: In one aspect, a method of sorting cells in a flow cytometry system is disclosed, which includes illuminating a cell with radiation having at least two optical frequencies shifted from one another by a radiofrequency to elicit fluorescent radiation from the cell, detecting the fluorescent radiation to generate temporal fluorescence data, and processing the temporal fluorescence data to arrive at a sorting decision regarding the cell without generating an image (i.e., a pixel-by-pixel image) of the cell based on the fluorescence data. In other words, while the fluorescence data can contain image data that would allow generating a pixel-by-pixel fluorescence intensity map, the method arrives at the sorting decision without generating such a map. In some cases, the sorting decision can be made with a latency less than about 100 microseconds. In some embodiments, the above method of sorting cells can have a sub-cellular resolution, e.g., the sorting decision can be based on characteristics of a component of the cell. In some embodiments in which more than two frequency-shifted optical frequencies are employed, a single radiofrequency shift is employed to separate the optical frequencies while in other such embodiments a plurality of different radiofrequency shifts are employed.

    Parameters for Use in Particle Discrimination

    公开(公告)号:US20220187182A1

    公开(公告)日:2022-06-16

    申请号:US17588040

    申请日:2022-01-28

    Abstract: Aspects of the present disclosure include methods for characterizing particles of a sample in a flow stream. Methods according to certain embodiments include detecting light from a sample having cells in a flow stream, generating an image of an object in the flow stream in an interrogation region and determining whether the object in the flow stream is an aggregate based on the generated image. Systems having a processor with memory operably coupled to the processor having instructions stored thereon, which when executed by the processor, cause the processor to generate an image of an object in a flow stream and to determine whether the object is an aggregate are also described. Integrated circuit devices (e.g., field programmable gate arrays) having programming for practicing the subject methods are also provided.

    Cell Sorting Using A High Throughput Fluorescence Flow Cytometer

    公开(公告)号:US20200209140A1

    公开(公告)日:2020-07-02

    申请号:US16814394

    申请日:2020-03-10

    Abstract: In one aspect, a method of sorting cells in a flow cytometry system is disclosed, which includes illuminating a cell with radiation having at least two optical frequencies shifted from one another by a radiofrequency to elicit fluorescent radiation from the cell, detecting the fluorescent radiation to generate temporal fluorescence data, and processing the temporal fluorescence data to arrive at a sorting decision regarding the cell without generating an image (i.e., a pixel-by-pixel image) of the cell based on the fluorescence data. In other words, while the fluorescence data can contain image data that would allow generating a pixel-by-pixel fluorescence intensity map, the method arrives at the sorting decision without generating such a map. In some cases, the sorting decision can be made with a latency less than about 100 microseconds. In some embodiments, the above method of sorting cells can have a sub-cellular resolution, e.g., the sorting decision can be based on characteristics of a component of the cell. In some embodiments in which more than two frequency-shifted optical frequencies are employed, a single radiofrequency shift is employed to separate the optical frequencies while in other such embodiments a plurality of different radiofrequency shifts are employed.

Patent Agency Ranking