Abstract:
The present invention discloses a light-emitting device, array substrate, display device and manufacturing method of light-emitting device. The light-emitting device comprises a substrate and a pixel define layer provided on the substrate, the pixel define layer defines at least one pixel unit, each of which comprises a plurality of first electrodes, an organic layer provided on the plurality of first electrodes, and a second electrode provided on the organic layer. The light-emitting device, array substrate, display device and manufacturing method provided by the present invention can allow the formed film of the organic layer on the first electrodes to have good flatness and allow portions of the organic layer on different first electrodes to have substantially the same thickness, thus flatness and uniformity of the formed film of the organic layer in the light-emitting device is improved and further display quality of the light-emitting device is improved.
Abstract:
The present invention provides a printing head comprising a plurality of sub-heads each comprising a base and a plurality of diversion trenches provided in the base, and one end of each of the diversion trenches is connected to one of nozzles of the sub-head. Projections of all the diversion trenches on a first plane in a first projection direction are arranged at an equal interval, the first plane is a plane defined by an arrangement direction and a length direction of the diversion trenches in the sub-head, and the first projection direction is a moving direction of the printing head with respect to a printing surface during printing. The spacing of the diversion trenches in each of the sub-heads is greater than that of the projections of all the diversion trenches in the first plane on the first projection direction.
Abstract:
The present disclosure relates to the field of display technology, and provides a display substrate, its manufacturing method, and a display device. Pixel partition walls of the display substrate include first pixel partition walls for defining first pixel regions and second pixel partition walls for defining second pixel regions. Each first pixel partition wall is of a height greater than each second pixel partition wall, and a plurality of adjacent second pixel regions is located at an identical first pixel region.
Abstract:
An organic thin film transistor and a method of manufacturing the same, an array substrate and a display device are disclosed. The thin film transistor including: a source electrode (4), a drain electrode (5), an organic semiconductor layer (6) disposed on the source electrode (4) and drain electrode (5), and a modified layer (7); the modified layer (7) is disposed at a position below an organic semiconductor layer (6) and corresponding to the source electrode (4) and the drain electrode (5), covers the source electrode (4) and the drain electrode (5), and is configured to change a contact angle on both the source electrode (4) and the drain electrode (5). The thin film transistor avoids the problems of poor formation effects and easy disconnection of the organic semiconductor layer (6) because of the large contact angle on electrode layers, and therefore reduces production costs.
Abstract:
A method for preparing a display substrate, including forming a pixel defining layer (20) on a substrate (100), wherein forming the pixel defining layer (20) includes: forming a basic pattern (200) of the pixel defining layer on the substrate (100); the basic pattern (200) of the pixel defining layer comprises a first pattern (200a) of inorganic material, the first pattern (200a) being a top part of the basic pattern (200) of the pixel defining layer; subjecting the first pattern (200a) to a surface treatment with a self-assembled monomolecular layer to form a fluorinated monomolecular layer (210) on the surface of the first pattern, thereby forming the pixel defining layer (20). The lyophobic performance of the pixel defining layer formed by the method may be maintained for a long time.
Abstract:
The present invention relates to an organic light-emitting diode, an array substrate and a preparation method thereof, and a display device. The organic light-emitting diode comprises an anode, a cathode, a light-emitting layer disposed between the anode and the cathode, and a hole injection layer disposed between the anode and the light-emitting layer, wherein the hole injection layer is provided therein with metal nanoparticles, and the frequency of a localized surface plasmon resonance of the metal nanoparticles is matched with the emission wavelength of the light-emitting layer. As the organic light-emitting diode is doped with metal nanoparticles in the hole injection layer and the resonance frequency of the localized surface plasmon of the metal nanoparticles is matched with the emission wavelength of the light-emitting layer, the metal nanoparticles are allowed to generate localized plasma resonance with photons, so that the light extraction efficiency of the organic light-emitting diode is enhanced.
Abstract:
A method for surface treatment is disclosed which relates to the technical field of producing thin-film devices by printing and solves the problem that the treatment of a substrate surface in the prior art can hardly meet the requirement for printing. The method for surface treatment includes a step of subjecting a surface of a base plate having at least two kinds of substrate patterns formed thereon to a surface treatment for forming a self-assembled monomolecular layer for at least once and a surface treatment by ultraviolet-ozone cleaning, so as to make the difference between the surface energies of the substrate patterns larger or smaller. The method for surface treatment of the invention is suitable for the surface treatment of the substrate surface during producing thin-film devices by printing.