Abstract:
The invention relates to a scanning microscope comprising a beam deflecting device (11), which directs an illuminating light beam (5) over or through a sample (21), and comprising a detector (33) for receiving detection light (23) exiting the sample. The scanning microscope comprises an extracting port (67) or another detector (37) and comprises a redirecting device (27), which is synchronized with the beam deflecting device and which directs the detection light according to the deflecting position of the beam deflecting device either to the detector or to the extracting port or to the other detector.
Abstract:
The invention relates to a scanning microscope comprising a beam deflecting device (11), which directs an illuminating light beam (5) over or through a sample (21), and comprising a detector (33) for receiving detection light (23) exiting the sample. The scanning microscope comprises an extracting port (67) or another detector (37) and comprises a redirecting device (27), which is synchronized with the beam deflecting device and which directs the detection light according to the deflecting position of the beam deflecting device either to the detector or to the extracting port or to the other detector.
Abstract:
An apparatus and a method for detection with a scanning microscope (1) are disclosed. The scanning microscope (1) encompasses a scanning device (7) that guides an illuminating light beam (3) through a scanning optical system (12) and a microscope optical system (13) and over or through a specimen (15). A digital circuit (30), which periodically interrogates the detected signals within a pixel (Px,y) and calculates an average therefrom, is placed after the detector unit (19).
Abstract:
An optical arrangement for deflecting a light beam includes first and second deflection devices, and a coupling mirror. The first deflection device is rotatable about a first axis using a first rotary drive, and includes two mirrors disposed non-rotatably with respect to each other in an angular position so as to rotate jointly about the first axis. The second deflection device is rotatable about a second axis using a second rotary drive, and includes a third mirror. The coupling mirror deflects the light beam onto the first or second mirror at an angle greater than 45° relative to the surface of the mirror. The first and second axes are perpendicular to each other. The first and a second mirrors rotate jointly about the first axis so that the light beam rotates about a center of rotation located on the second axis.
Abstract:
A microscope for examining an object includes a laser light source generating pulsed light so as to illuminate the object. A measuring system including a detector is adapted to detect detection light coming from the object and the measuring system generates a measurement signal based on the detection light. The microscope includes a programmable integrated circuit including a control element and at least one of a first delay element and a second delay element. The control element is configured to generate a first control signal adapted to control the detector and the measuring system. The control element is further configured to generate a second control signal adapted to control the laser light source. The first and second delay elements are configured to delay the first and second control signals, respectively.
Abstract:
An acousto-optical system is described comprising at least one acousto-optical element having at least one transducer that is attached to a crystal, a driver unit for generating at least one acoustic signal for driving acousto-optical elements modifying light transmitted through the acousto-optical element and comprising at least one digital data processing unit, at least one digital-to-analog converter transforming the digital combination signal into an initial analog driver signal, and an amplifier for amplifying the initial analog driver signal to become said analog electronic driver signal. Further, a microscope and a method of operating the acousto-optical element is are described. Various objectives are achieved like more flexibility, real time compensation for non-linearity and reducing the number, size, costs and energy consumption of electronic components.
Abstract:
A detector apparatus is configured to receive light and generate electrical signals. The detector apparatus includes a housing, a detector disposed in the housing and a cooling component disposed in the housing. The cooling component electrically insulates the detector with respect to the housing or is part of an insulator electrically that insulates the detector with respect to the housing.
Abstract:
A detector apparatus is configured to receive light and generate electrical signals. The detector apparatus includes a light sensor having a light incidence side and a cooling component. The cooling component is in direct contact with at least one of the light sensor, on the light incidence side, or a substrate carrying the light sensor.
Abstract:
A device for counting photons includes a detector unit that is configured to generate an detected signal. A switching unit is configured to be impinged upon by the detected signal and to trigger a switching state for each detection pulse so as to generate a state signal. A sampling unit is configured to sample the state signal at a predetermined sampling frequency. A serial-parallel converter unit is configured to parallelize the serially generated sampled data by grouping successive sampled data into a sampled data packet. An evaluation unit is configured to evaluate the binary values of sampled data packets so as to identify a partial counter result indicating the number of switching state changes occurring in the switching unit, and to add partial counter results identified in individual clock cycles.
Abstract:
A device in the form of a scanning microscope, a device in the form of a structural unit for a microscope and a method and a device for optically scanning one or more samples. A device in the form of a scanning microscope has a light source (42), which emits an illuminating light beam (32). A focusing lens system (34) focuses the illuminating light beam (32) on a region to be examined of a sample (36). An actuator arrangement moves the focusing lens system (34) according to a prescribed scanning pattern transversely in relation to a center axis of the illuminating light beam (32) and/or in relation to a housing of a structural unit (20) that encloses the focusing lens system (34).