摘要:
A method for etching dielectric layers is disclosed. A first etch of the dielectric layers is performed with a gas chemistry comprising C.sub.4 F.sub.8 flowing at about 10 sccm to about 25 sccm and CH.sub.3 F flowing at about 5 sccm to about 20 sccm. A second etch of the dielectric layers is performed with the gas chemistry and flow rates of gases which are about 10% to about 40% greater than the flow rates of gases in the first etch.
摘要翻译:公开了蚀刻电介质层的方法。 电介质层的第一次蚀刻是用包含以约10sccm至约25sccm流动的C 4 F 8的气体化学物质和以约5sccm至约20sccm流动的CH 3 F进行的。 介电层的第二次蚀刻是通过气体化学和气体流速比第一蚀刻中的气体流速大约10%至大约40%进行的。
摘要:
A method for forming a contact hole of a capacitor of a DRAM cell is disclosed. The method includes forming a first conductive layer on a semiconductor substrate, and forming a first dielectric layer on the first conductive layer. After patterning to etch the first dielectric layer and the first conductive layer, a second dielectric layer is formed on the semiconductor substrate and the first dielectric layer. Next, the second dielectric layer is anisotropically etched back to form a first spacer on sidewalls of the first dielectric layer and the first conductive layer. A first silicon oxide layer is formed over the semiconductor substrate, the first dielectric layer, the first spacer, followed by patterning to etch the first silicon oxide layer, wherein the first spacer and the first dielectric layer are used for facilitating self-aligned etching. Thereafter, a second conductive layer is formed over the semiconductor substrate, wherein surface of the first silicon oxide layer is exposed, and a second silicon oxide layer is formed over the second conductive layer and the first silicon oxide layer. Finally, patterning to etch a portion of the second silicon oxide layer to expose a portion of the second conductive layer, therefore a contact hole of the capacitor is formed.
摘要:
A multiple crown shaped polysilicon structure, used for a lower electrode of a DRAM stacked capacitor structure, has been developed. The multiple crown shaped, lower electrode, is formed overlying, and contacting a polysilicon fill layer, that is located between insulator encapsulated polycide gate structures. The polysilicon fill layer, in turn, contacts an underlying source/drain region of a transfer gate transistor. The multiple crown shaped lower electrode is comprised vertical polysilicon shapes, connected to an underlying, horizontal polysilicon shape, with the horizontal polysilicon shape overlying the polysilicon fill layer. One to three, vertical polysilicon shapes, are used on each side of the multiple crown shaped lower electrode.
摘要:
The present invention is a method of manufacturing crown shape capacitors in the semiconducter memories. Using a single step etching to farbricate the capacitor in a DRAM cell. The method can form side wall polymers and etching byproductions on the surface of the first polysilicon, using the side wall polymers and the etching byproductions as a mask to form the crown shape capacitors with pillars. Moreover, this present invention can form the crown shape structure and pillars in the same step, the crown shape structure and the pillars increase the surface area of the capacitor. Therefore the present invention will increase the performance of the capacitor.
摘要:
A method is described using a single photoresist mask to make a double-crown-shaped DRAM capacitor self-aligned to the capacitor node contact. After forming the DRAM FETs and the bit lines, a planar BPSG layer, a first polysilicon layer, and a CVD oxide layer are deposited. A node contact photoresist mask is used to form first openings in the CVD oxide in which silicon nitride sidewall spacers are formed. A smaller second opening is etched in the first opening to form node contact openings to the DRAM FET source/drain areas. A conformal second polysilicon layer is deposited to form node contacts in the second openings and over the free-standing sidewall spacers. A planar spin-on glass layer is then used as a self-aligned mask to etch back to expose the second polysilicon layer, which is then removed from the top of the sidewall spacers. After removing the spin-on glass an anisotropic etch is used to form the double-crown-shaped capacitor bottom electrodes self-aligned to the node contacts. The bottom electrode surface is roughened to increase the capacitance area, and the sidewall spacers are removed. An interelectrode dielectric layer and a third polysilicon layer are used to complete the double-crown-shaped stacked capacitors.
摘要:
A nonvolatile memory capable of storing multi-bits binary information is provided. The memory includes an oxide formed on a substrate. A control gate is formed on the oxide. An L-shape structure is attached on sidewall of the control gate. Spacers are formed on the L-shape structure to act as a floating gate. A first doped region and a second doped region is formed in the substrate adjacent to the spacers with a channel between the two doped regions. Wherein the spacer represent a first binary status by injecting and storing electrical charges in the spacers. Or to represent a second binary status by not injecting electrical charges into the spacer.
摘要:
A method for fabricating contact holes in high density integrated circuits and the resulting structure are disclosed. It is shown that by judiciously integrating the process of forming shallow tapered holes with self-alignment techniques, self-aligned holes can be fabricated with reduced number of masking process steps. This is accomplished by first forming shallow tapered holes to a certain depth over certain regions in a substrate by means of isotropic etching and then extending them by anisotropic etching to full depth corresponding to the regions they are allowed to contact. The net result is a whole set of holes which are self-aligned and which are formed by means of a single photoresist mask.
摘要:
A method of fabrication of a storage capacitors for DRAM memory cells using silylated photoresist is described. Partially completed DRAM memory cells comprising wordline transistor gates and bitline source and drain regions is provided. Conductive plugs are provided through a dielectric layer to the top surfaces of the bitline drain regions. A first conductive layer is deposited overlying the conductive plugs. A photoresist layer is deposited overlying the first conductive layer. The photoresist layer is etched to define the areas for the lower plates of the storage capacitors. The photoresist is exposed to a silylating agent to form a silylated layer. The top layer of the silylated photoresist is etched through to form a mask for subsequent etching. The photoresist layer is etched as defined by the mask. The first conductive layer is etched as defined by the mask to form the shape of the lower nodes of the storage capacitors. The remaining silylated photoresist is removed. A capacitor dielectric layer is deposited overlying the lower nodes of the storage capacitors. A second conductive layer is deposited to form the upper nodes of the storage capacitors. A passivation layer is deposited to complete fabrication.
摘要:
A method for improving the patterning process of a conductive layer using a dual-layer cap of oxynitride and silicon nitride. The oxynitride layer acts as a BARC (Bottom Anti-Reflective Coating) to improve photolithography process performance. The oxynitride is formed by plasma-enhanced chemical vapor deposition.
摘要:
A stacked layer including a first oxide, a nitride layer, a second oxide layer and an oxynitride layer is formed on the top of the first oxide layer. An etching is performed through a photoresist to etch the oxynitride, the second oxide and nitride. Oxide spacers are formed on the side walls of the pattern structure, the oxynitride layer is also removed during the formation of the oxide spacers. Trenches are generated by a dry etching technique. The second oxide and the oxide spacers are removed. Next, a thermal oxidation is performed to rounding the corners of the trench openings. A gap filling material is refilled into the trenches and formed on the nitride. Next, a chemical mechanical polishing (CMP) is used to remove the top of the CVD-oxide and the nitride layer. The residual nitride layer, the CVD-oxide and pad oxide are removed to create trench isolation structures with rounding corners.