Abstract:
A wireless transceiver includes a transmit path configured to generate a radio frequency (RF) transmit signal for transmission via an antenna. A receive path is configured to receive an RF receive signal via the antenna. A circulator-based quadrature duplexer includes an in-phase circulator and a quadrature-phase circulator configured to couple the transmit signal from the transmit path to the antenna while generating a residual transmit signal on the receive path, and to couple the receive signal from the antenna to the receive path. The circulator-based quadrature duplexer promotes cancellation of the residual transmit signal on the receive path.
Abstract:
A reconfigurable antenna structure includes first and second reconfigurable antennas, a configuration module, and an antenna processing circuit. The first reconfigurable antenna is configured, in response to a first configuration signal, to have a first radiation pattern and to have a first frequency bandwidth and the second reconfigurable antenna is configured, in response to a second configuration signal, to have a second radiation pattern and to have a second frequency bandwidth. The configuration module is configured to generate the first and second configuration signals. The antenna processing circuit is configured to send one or more transmit signals to one or more of the first and second reconfigurable antennas for transmission via one or more of the channels of interest and receive one or more receive signals from the one or more of the first and second reconfigurable antennas.
Abstract:
A poly spiral antenna includes spiral antenna sections and interconnecting traces. A first spiral antenna section has a first interwoven spiral pattern and a first excitation configuration to provide a first radiation pattern component. A second spiral antenna section has a second interwoven spiral pattern and a second excitation configuration to provide a second radiation pattern component. A third spiral antenna section has a third interwoven spiral pattern and a third excitation configuration to provide a third radiation pattern component. The interconnecting traces couple the first, second, and third spiral antenna sections together such that the first, second, and third radiation pattern components form a radiation pattern of the poly spiral antenna.
Abstract:
An antenna assembly includes a substrate, a plurality of spiral dipole antenna sections, and a phase array feeder. The substrate has a three-dimensional shaped region. Each of the spiral dipole antenna sections is supported by a corresponding section of the three-dimensional shaped region and conforms to the corresponding section of the three-dimensional shaped region such that, collectively, the plurality of spiral dipole antenna sections has an overall shape approximating a three-dimensional shape. The spiral dipole antenna sections are coupled together in accordance with a coupling configuration for beamforming and/or power combining. The phase array feeder inputs, or outputs, a phase offset representations of a radio frequency (RF) signal from, or to, the spiral dipole antenna sections and converts between the phase offset representations of the RF signal and the RF signal.
Abstract:
An antenna assembly a spiral antenna feed and a programmable circuit. The spiral antenna feed includes a substrate, a spiral antenna element, and a feed point. The substrate has a three-dimensional hyperbolic shaped region, which supports the spiral antenna element such that the spiral antenna element has an overall shape approximating a three-dimensional hyperbolic shape. The feed point is coupled to a connection point of the spiral antenna element. The programmable circuit produces a projected artificial magnetic conductor reflector dish that reflects an inbound RF signal to the spiral antenna feed and reflects an outbound RF signal from the spiral antenna feed.
Abstract:
A bidirectional time-division duplexing transceiver circuit includes a first and a second bidirectional phase-shift circuit, and a bidirectional amplifier circuit including a first amplifier circuit and a second amplifier circuit. The first amplifier circuit and the second amplifier circuit are coupled via double-pole-double-throw (DPDT) switches to radio-frequency (RF) antennas and the first and the second bidirectional phase-shift circuits. The (DPDT) switches enable the first amplifier circuit and the second amplifier circuit to be operable simultaneously as transmit (TX) path amplifiers in a first time slot and as a receive (RX) path amplifiers in a second time slot.
Abstract:
A high frequency termination device includes a printed circuit board. A ground pad having a first predetermined inductive reactance at a resonant frequency can be mounted on the printed circuit board. A resistor landing pad having a second predetermined inductive reactance at the resonant frequency can be mounted on the printed circuit board. The resistor landing pad can be selectively positioned adjacent to the ground pad to create a desired capacitive reactance at the resonant frequency to cancel at least part of the first predetermined inductive reactance and the second predetermined inductive reactance. A terminating resistor can be coupled with the resistor landing pad. An impedance of the termination device is dominated by a resistance value of the terminating resistor at the resonant frequency due to cancellation of at least part of the first predetermined inductive reactance and the second predetermined inductive reactance at the resonant frequency.
Abstract:
The present disclosure provides for a fabrication layout and design for transmission lines that are implemented as part of a differential Wilkinson power divider/combiner. The transmission lines are configured and arranged in a poly-loop line geometry. The poly-loop line geometry includes overlapping transmission lines to route differential signals within the differential Wilkinson power divider/combiner. The overlapping transmission lines each include a crossover region to route the differential signals. The crossover represents a spacing between the overlapping transmission lines that encompasses a magnetic flux of the overlapping transmission lines.
Abstract:
A reconfigurable antenna structure includes first and second reconfigurable antennas, a configuration module, and an antenna processing circuit. The first reconfigurable antenna is configured, in response to a first configuration signal, to have a first radiation pattern and to have a first frequency bandwidth and the second reconfigurable antenna is configured, in response to a second configuration signal, to have a second radiation pattern and to have a second frequency bandwidth. The configuration module is configured to generate the first and second configuration signals. The antenna processing circuit is configured to send one or more transmit signals to one or more of the first and second reconfigurable antennas for transmission via one or more of the channels of interest and receive one or more receive signals from the one or more of the first and second reconfigurable antennas.
Abstract:
An antenna array structure includes a plurality of antennas, wherein a first antenna has a first geometric shape, provides a first radiation pattern, and has a first frequency bandwidth. A second antenna has a second geometric shape to provide a second radiation pattern and has a second frequency bandwidth. The first and second frequency bandwidths at least partially overlap to include channels of interest. An antenna processing circuit sends one or more transmit signals to one or more of the antennas for transmission via one or more of the channels of interest and receives one or more receive signals from the one or more of the antennas or from another one or more of the antennas via the one or more of the channels of interest or from another one or more of the channels of interest.