摘要:
The present invention provides a liquid crystal display panel that is adaptive for preventing a liquid crystal contamination as well as improving an adhesive strength of a sealant and an organic insulating film, and a fabricating method thereof. A liquid crystal display device according to an embodiment of the present invention includes: a first and a second substrate having a liquid crystal region, a sealant region, and an outer region; a wiring disposed on the first substrate, the wiring crossing the sealant region; a gate insulating film disposed on the wiring; an organic insulating film disposed on a portion of the wiring; and a sealant disposed on the sealant region of the first and second substrates, wherein the sealant is in contact with the gate insulating film.
摘要:
An organic light emitting display device that is capable of preventing the permeation of moisture by changing a sealing structure, thereby preventing the degradation of pixels and thus improving look-and-feel characteristics and a method of manufacturing the same are disclosed. The organic light emitting display device includes a first substrate and a second substrate being opposite to each other, the first substrate and the second substrate having a display region defined in the middle thereof and a non-display region defined at the edge thereof, respectively, a plurality of gate lines and data lines formed at the display region on the first substrate, the gate lines and the data lines crossing each other to define a pixel region, a thin film transistor formed at each of the intersections between the gate lines and data lines, an organic light emitting layer formed on the second substrate corresponding to the pixel region, and first and second electrodes located above and below the organic light emitting layer and a sealing structure connected between the first and second substrates, such that the first and second substrates are bonded to each other by the sealing structure, for preventing the permeation of moisture and gas.
摘要:
A method of patterning a transparent conductive film adaptive for selectively etching a transparent conductive film without any mask processes, a thin film transistor for a display device using the same and a fabricating method thereof are disclosed. In the method of patterning the transparent conductive film, an inorganic material substrate is prepared. An organic material pattern is formed at a desired area of the inorganic material substrate. A thin film having a different crystallization rate depending upon said inorganic material and said organic material is formed. The thin film is selectively etched in accordance with said crystallization rate.
摘要:
Disclosed is a thin film transistor substrate for a fringe filed switching type liquid crystal display device, and a fabrication method thereof, that reduces the number of required mask processes, and thus improves fabrication efficiency. The fabrication method involves three mask processes, wherein the masks are partial transmitting masks, and the resulting photo-resist patterns have varying thicknesses. By having photo-resist layers of varying thicknesses, structures can be formed in multiple etching steps using the same photo-resist pattern by incrementally removing the photo-resist according to its thickness. The thin film transistor substrate has a common line, a common electrode, a gate line and a gate electrode formed directly on the substrate. The common electrode overlaps the pixel electrode in the pixel area.
摘要:
A liquid crystal display device having a simplified manufacturing process is disclosed. The liquid crystal display device includes a gate line and a common line having a first conductive layer group having at least double conductive layers. A common electrode is formed by an extension of at least one transparent conductive layer of a common line. A portion of the common electrode is formed of one conductive layer of the first conductive layer group, while a remaining portion of the common electrode is formed of the first conductive layer group. The gate line, a source electrode and a drain electrode have a second conductive layer group having at least double conductive layers, and the pixel electrode is formed by an extension of at least one transparent conductive layer of the drain electrode.
摘要:
A fringe field switching thin film transistor substrate includes a gate electrode connected to the gate line, a source electrode connected to the data line, a drain electrode opposed to the pixel electrode and a semiconductor layer defining a channel between the source electrode and the drain electrode. A common electrode extends from the common line into the pixel area. A pixel electrode extends from the drain electrode into the pixel area overlapping the common electrode with the gate insulating film. The gate line and the common line are formed from a first conductive layer group having double conductive layers, and the common electrode is formed by an extension of the lowermost layer of the common line. The data line, the source electrode and the drain electrode are formed of a second conductive layer group having double conductive layers.
摘要:
A liquid crystal display device, including: first and second substrates; a gate line on the first substrate; a data line crossing the gate line having a gate insulating film therebetween to define a pixel area; a pixel electrode formed of a transparent conductive film in a pixel hole passing through the gate insulating film in the pixel area; and a thin film transistor including a gate electrode, a source electrode, a drain electrode, and a semiconductor layer defining a channel between the source electrode and the drain electrode, wherein the semiconductor layer overlaps with a source and drain metal pattern including the data line, the source electrode and the drain electrode; and wherein the drain electrode protrudes from the semiconductor layer toward inside of the pixel electrode to be connected to the pixel electrode.
摘要:
A liquid crystal display device is provided that comprises a gate line; a first insulating film on the gate line; a data line crossing the gate line to define a pixel region, the pixel region having a transmissive area and a reflective area; a thin film transistor connected to the gate line and the data line; a pixel electrode formed in the pixel region; a second insulating film on the thin film transistor; a storage capacitor including a storage upper electrode overlapping the gate line; a transmission hole exposing at least a portion of the pixel electrode, and a reflective electrode formed in the reflective area of the pixel region, the reflective electrode connecting the pixel electrode with thin film transistor and the storage upper electrode, wherein the gate line and the pixel electrode include a first transparent conductive layer.
摘要:
A thin film transistor substrate of fringe field switching type and a fabricating method thereof for simplifying a process are disclosed. In the thin film transistor substrate of fringe field switching type, a gate line has a multiple-layer structure and includes a transparent conductive layer. A data line crosses the gate line to define a pixel area. A thin film transistor is connected to the gate line and the data line. A common line is provided in a multiple-layer structure and in parallel to the gate line. A common electrode is formed by an extension of a transparent conductive layer of the common line at said pixel area. A pixel electrode is connected to the thin film transistor to form a fringe field with the common electrode in the pixel area.
摘要:
A thin film transistor substrate of horizontal electric field type includes: a gate line and a first common line formed on a substrate to be in parallel to each other; a data line crossing the gate line and the first common line with a gate insulating film therebetween to define a pixel area; a second common line crossing the first common line having the gate insulating film therebetween; a thin film transistor connected to the gate line and the data line; a common electrode extending from the second common line in said pixel area; a pixel electrode that is parallel to the common electrode and the second common line; a protective film for covering the thin film transistor; a gate pad having a lower gate pad electrode connected to an upper gate pad electrode through a first contact hole; a common pad having a lower common pad electrode connected to an upper common pad electrode through a second contact hole; and a data pad having a lower data pad electrode connected to an upper data pad electrode provided within a third contact hole.