摘要:
Disclosed are a phosphor, a coating phosphor composition, a method for preparing the phosphor, and a light emitting device. A silicate-based phosphor is expressed in a chemical formula of (4-x-y-z)SrO.xBaO.zCaO.aMgO.2(SiO2).bM2O3:yEu, wherein M is at least one of Y, Ce, La, Nd, Gd, Tb, Yb or Lu, in which 0
摘要翻译:公开了荧光体,涂料荧光体组合物,荧光体的制备方法以及发光装置。 硅酸盐系荧光体以(4-xyz)SrO·BaO·zCaO·aMgO·2(SiO 2)·bM 2 O 3:yEu的化学式表示,其中M为Y,Ce,La,Nd,Gd中的至少一种 ,Tb,Yb或Lu,其中0
摘要:
An apparatus for fabricating a flat panel display device includes a device that applies a flowable material on a substrate; a soft mold having a base surface, a groove part recessed in relation to the base surface, and a protruding part protruding from the base surface, the soft mold applying a pressure on the flowable material for forming a multi-stepped profile pattern in the flowable material.
摘要:
A fabricating method of a color filter array substrate includes the steps of forming a black matrix on a substrate, forming red, green, blue color filters on the substrate on which the black matrix is formed, forming an overcoat layer including a white color filter on the substrate on which the red, green, and blue color filters are formed, aligning a flat panel soft mold to the overcoat layer; and smoothing the overcoat layer using the flat panel soft mold.
摘要:
A TFT-LCD array substrate and a method for manufacturing the same. The TFT-LCD array substrate includes a substrate, on which at least one gate line and at least one data line are formed and cross with each other to define sub-pixel regions, one of the sub-pixel regions includes a thin film transistor (TFT) and a pixel electrode, and the TFT is electrically connected to the pixel electrode. The TFT-LCD array substrate further includes a compensating parasitic capacitor structure comprising a first electrode electrically connected to the gate line and a second electrode electrically connected to the pixel electrode.
摘要:
An optical network terminator of the present invention includes an optical wavelength division multiplexer for receiving an optical signal and incoherent light. An optical detection unit converts a downstream high speed and low speed optical signals into electrical signals. A laser diode converts an upstream signal into an optical signal. A high speed driving unit is supplied with power from a power supply unit to drive a forward-biased laser diode and establish a data and video channel. A high speed reception unit is supplied with the power to receive a downstream data and video channel. A charging unit outputs charged power at the time of a power failure. A low speed driving unit is supplied with the charged power to reverse-bias the laser diode to establish a voice channel. A low speed reception unit is supplied with the charged power to receive a voice channel.
摘要:
The present invention relates to a wavelength-division multiplexed passive optical network. In particular, it relates to a technology for minimizing the optical loss at a wavelength-division multiplexed passive optical network based on wavelength-locked light source Thereby it improves the transmission quality and increases the transmission distance.A 4-port optical path setting device of the present invention increases the amount of light injected into an optical transmitter and thereby improves the wavelength-locking characteristic of a light source. In addition, it can decrease the optical transmission loss in an optical transmission path, and by an optical amplifier being inserted therein; it can also compensate the optical loss in an optical transmission path.In the present invention, a 4-port optical path setting device having the characteristics described above and a method for fault recovery without an additional optical loss are presented.
摘要:
Disclosed herein is a bidirectional wavelength division multiplexed self-healing ring network. The ring network includes a central office and a plurality of remote nodes. Two optical fibers each connect the central office and the remote nodes in a ring form to allow optical signals to be bidirectionally received and transmitted between the central office and the remote nodes. One of the two optical fibers is a drop fiber for transmitting optical signals from the central office to the remote nodes, while the other is an add fiber for transmitting optical signals from the remote nodes to the central office.
摘要:
An apparatus and method for measuring optical signal-to-noise ratio in optical communications includes (1) a variable optical band-pass filter (VOBPF) that passes the amplified output beam when the beam wavelength is the same as the passing wavelength of the VOBPF; (2) a 1×4 beam distributor for distributing the passing beam of the VOBPF into four streams; (3) a measuring device for measuring Stokes parameters S0, S1, S2, S3 from the four distributed beams; (4) a calculating device for calculating the optical signal power by finding the power of the polarized component of the amplified output beam from the Stokes parameters S1, S2, and S3; (5) a calculating device for calculating the noise power by finding the power of the noise included in the amplified output beam from Stokes parameter S0 and the optical signal power; and (6) a dividing device for calculating the ratio Power of Optical Signal Power of Noise at the passing wavelength.
摘要:
This invention relates to a multicast-capable optical cross-connect with layered modularity. Due to its layered modularity, this invention can be applied to many differently structured networks and provides easier maintenance than conventional optical cross-connects and efficient preparation for network evolution or node upgrade. By exploiting its simple elementary switches, multicast-capable optical cross-connect with layered modularity minimizes the switching time. For a given node, M input fiber ports supply multiplexed optical signals from other nodes in the network and m input fiber ports supply multiplexed optical signals generated from the node. M+m 1×M optical power splitters 311, 312, 313, 314, 315 distribute multiplexed input signals. A drop link module 331 selects signals to be dropped at the node where the optical cross-connect is installed. M transmission link modules 321, 322, 323 select signals to be transmitted to other nodes out of input signals.
摘要翻译:本发明涉及具有分层模块化的具有组播能力的光交叉连接。 由于其分层的模块化,本发明可以应用于许多不同结构的网络,并且提供比常规光交叉连接更简单的维护以及用于网络演进或节点升级的有效准备。 通过利用其简单的基本交换机,具有分层模块化的多播能力交叉连接最小化了切换时间。 对于给定节点,M个输入光纤端口提供来自网络中其他节点的复用光信号,并且m个输入光纤端口提供从节点产生的复用光信号。 M + m×1M光功率分配器311,312,313,314,315分配复用输入信号。 下拉链路模块331选择要在其上安装光交叉连接的节点丢弃的信号。 M个传输链路模块321,322,323从输入信号中选择要发送到其他节点的信号。
摘要:
An apparatus for measuring the wavelength, optical power, and an optical signal-to-noise ratio (OSNR) of each optical signal in wavelength-division-multiplexing optical communication includes: elements for splitting a part of wavelength-division-multiplexed (WDM) signals, elements for amplifying the WDM signals and generating spontaneous emission light simultaneously, elements for reflecting a predetermined section of the spontaneous emission light and generating an optical reference signal, and elements for combining the optical reference signal with the part of the WDM signals split by the splitting elements and generating a combined light. The apparatus has components for filtering the combined light at a fixed temperature and generating a waveform which is the same as an optical spectrum of the combined light in the time domain. The apparatus includes elements for converting the waveform into an electrical signal and components for signal processing that measure the wavelength, the optical power, and the OSNR of the WDM signals.