Abstract:
Provided is an imaging apparatus that generates a signal based on the sum of signals output by a plurality of pixels, and a signal based on the difference between the signals output by the plurality of signals, and performs AD conversion on the generated signals.
Abstract:
Column signal processing units are provided in correspondence with respective columns of a pixel array. The column signal processing unit includes a sample-and-hold unit configured to hold an analog signal output from a pixel, a buffer unit configured to buffer the signal held in the sample-and-hold unit, and an AD conversion unit. The AD conversion unit converts the signal held by the sample-and-hold unit and buffered by the buffer unit into a digital signal.
Abstract:
The present disclosure relate to photoelectric conversion apparatus and imaging system. The photoelectric conversion apparatus has a plurality of pixels arranged in rows and columns, and each configured to generate a signal by photoelectric conversion, a plurality of holding capacitors arranged correspondingly to the respective columns of the plurality of pixels, and configured to hold signals based on the pixels, a first output line, a second output line, a first switch arranged between the holding capacitor and the first output line, a second switch arranged between the holding capacitor and the second output line, and a column selecting line configured to control the second switch, wherein a wiring structure of a portion at which the column selecting line intersects the first output line is different from a wiring structure of a portion at which the column selecting line intersects the second output line.
Abstract:
A solid-state imaging device includes a photon detector that operates in a Geiger mode and outputs an output signal in accordance with incidence of a photon, a quench element that causes the photon detector to transition to a non-Geiger mode in accordance with the output signal, a control unit that, when the photon detector transitions from a Geiger mode to a non-Geiger mode, switches the quench element from a detection mode, in which the quench element is in a relatively low resistance state and the photon detector detects a photon, to a hold mode, in which the quench element is in a relatively high resistance state and holds the output signal, and a signal processing circuit that performs a predetermined process on the output signal.
Abstract:
An imaging apparatus includes a first holding circuit, a second holding circuit, and a calculator. The first holding circuit is configured to hold and output a logical value based on a logical value supplied from an address decoder. The second holding circuit is configured to hold and output a logical value based on the logical value output from the first holding circuit. The calculator is configured to receive the logical values supplied from the first and second holding circuits and perform a logical operation for generating a driving signal.
Abstract:
Provided is an imaging device including row drive unit having a first storage unit that stores and outputs a first signal for a readout from the pixels on an associated row, a second storage unit that stores and outputs a second signal for an operation for causing the photoelectric conversion element on an associated row to be reset to a charge accumulation state, and a third storage unit that stores and outputs a third signal for maintaining the photoelectric conversion element on an associated row in a charge accumulation state or a reset state based on the first signal output from the first storage unit and the second signal output from the second storage unit.
Abstract:
In a period in which a pixel signal of another pixel is read out from the pixel, a transistor connected to a floating diffusion region of a pixel not performing reading out of a pixel signal from the pixel is turned off.
Abstract:
A solid-state imaging apparatus and an imaging system which can reduce the occurrence of darkening and decrease deterioration in CDS performance are provided. The solid-state imaging apparatus has: a pixel unit including a photoelectric conversion unit for generating a signal by a photoelectric conversion; an amplifier unit for amplifying the signal generated by the photoelectric conversion unit; and a limiting circuit for limiting a level of an output signal from the amplifier unit. The pixel unit outputs a noise signal under a reset state during a first period and outputs a pixel signal under a non-reset state during a second period. The limiting circuit limits the level of the output signal from the amplifier unit in the first period, lower than the level of the output signal from the amplifier unit in the second period.
Abstract:
An imaging apparatus includes: a pixel configured to generate a signal through photoelectric conversion; a comparator configured to compare a signal generated by the pixel with a first reference signal that changes with time; and a control unit configured to change the rate of change of the first reference signal with respect to time according to a comparison result of the comparator.