Abstract:
Systems and methods for reducing file sizes for files delivered over a network are disclosed. A method comprises receiving a first file comprising sequences of data; creating a hash table having entries corresponding to overlapping sequences of data; receiving a second file comprising sequences of data; comparing each of the sequences of data in the second file to the sequences of data in the hash table to determine sequences of data present in both the first and second files; and creating a third file comprising sequences of data from the second file and representations of locations and lengths of said sequences of data present in both the first and second files.
Abstract:
Systems and methods of providing fine grained control over MSS values of transport layer connections. A device intermediary to a plurality of clients and a plurality of servers can identify a first MSS value based on a MTU value of a VLAN interface responsive to a request to establish a transport layer connection. Device determines that a MSS value of the VLAN is less than the first MSS value. Device updates, responsive to the determination, the first MSS value to a second MSS value corresponding to the MSS value of the VLAN. Device determines that an MSS value specified by a profile configured for a virtual server of the device is less than the second MSS value. Device updates the second MSS value to the MSS value of the profile responsive to determining that the MSS value specified by the profile is less than the second MSS value.
Abstract:
The systems and methods of the present solution are directed to collecting log information from multiple nodes in a multi-nodal cluster. Generally, a logging process runs to collect log information from multiple nodes in a multi-nodal cluster, e.g., a cluster of appliances. The logging process collects the log information and merges the collected log information to create a coherent unified log. The logging process may run on a node designated for the purpose. The designated node may be internal or external to the cluster. The logging process determines a topology for the cluster, establishes a communication channel with each active intermediary device identified in the topology, collects log entries from each active intermediary device, each log entry comprising information on network traffic traversing the respective intermediary device, and merges the collected log entries into a unified cluster log comprising information on network traffic traversing the cluster.
Abstract:
The present disclosure relates to methods and systems for dynamically changing an advertised window for a transport layer connection. A device can receive data from a server destined for an application. The device identifies the size of the application buffer corresponding to the application and advertises the application buffer size as a window size to the server. The device stores the data in the device memory. The device then determines the memory usage by comparing the memory usage to one or more predetermined thresholds. If the device determines that the memory usage is below a first predetermined threshold, the device can implement an aggressive dynamic receive buffering policy in which the device increases the advertised window size by a first increment. If the device determines that the memory usage is above the first threshold and below a second threshold, the device executes a more conservative dynamic receive buffering policy.
Abstract:
The systems and methods of the present solution are directed to collecting log information from multiple nodes in a multi-nodal cluster. Generally, a logging process runs to collect log information from multiple nodes in a multi-nodal cluster, e.g., a cluster of appliances. The logging process collects the log information and merges the collected log information to create a coherent unified log. The logging process may run on a node designated for the purpose. The designated node may be internal or external to the cluster. The logging process determines a topology for the cluster, establishes a communication channel with each active intermediary device identified in the topology, collects log entries from each active intermediary device, each log entry comprising information on network traffic traversing the respective intermediary device, and merges the collected log entries into a unified cluster log comprising information on network traffic traversing the cluster.
Abstract:
The present disclosure is directed towards systems and methods for supporting Simple Network Management Protocol (SNMP) request operations over clustered networking devices. The system includes a cluster that includes a plurality of intermediary devices and an SNMP agent executing on a first intermediary device of the plurality of intermediary devices. The SNMP agent receives an SNMP GETNEXT request for an entity. Responsive to receipt of the SNMP GETNEXT request, the SNMP agent requests a next entity from each intermediary device of the plurality of intermediary devices of the cluster. To respond to the SNMP request, the SNMP agent selects a lexicographically minimum entity. The SNMP agent may select the lexicographically minimum entity from a plurality of next entities received via responses from each intermediary device of the plurality of intermediary devices.
Abstract:
The present invention is directed towards systems and methods for multipath transmission control protocol connection (MPTCP) management. A first device, intermediary between a second device and a third device, may establish a protocol control structure responsive to establishment of a MPTCP session between the first device and the second device. The first device may maintain, via the protocol control structure, an identification of a plurality of subflows comprising transmission control protocol (TCP) connections in the MPTCP session between the first device and the second device. The first device may convert or translate, via the protocol control structure, subflow-specific sequence identifiers of packets transmitted via each of the plurality of subflows, to sequence identifiers unique across the plurality of subflows and identifying related packets from each subflows to be processed at the third device. The third device may receive the packets with the converted sequence identifiers in a single TCP connection.
Abstract:
The present disclosure is directed towards systems and methods for application performance measurement. A device may receive a first document for transmission to a client, comprising instructions for the client to transmit a request for an embedded object. A flow monitor executed the device may generate a unique identification associated with the first document, the unique identification identifying a first access of the first document, and transmit the first document and unique identification to the client. The device may receive, from the client, a request for the embedded object comprising the unique identification, and transmit, to a server, the request for the embedded object at a transmit time. The device may receive, from the server, the embedded object at a receipt time, and may transmit a performance record comprising an identification of the object, the server, the transmit time, the receipt time, and the unique identification to a data collector.
Abstract:
The present solution relates to systems and methods for capturing and consolidating packet tracing in a cluster system. A multi-nodal cluster processing network traffic contains multiple nodes each handling some of the processing. A node may initially receive a flow and transfer processing of the flow to another node for processing. A flow may therefore pass from one node to another, from two nodes to many nodes. In some instances, it is helpful to generate a trace of a flow. For example, in debugging a network communication flow, a trace of the flow through the cluster can be helpful. Each node has a packet engine (“PE”) which processes data packets and can, when trace is enabled, generate a trace file for the packets processed at the respective node. A trace aggregator merges these distinct trace files into an aggregate trace for the cluster.
Abstract:
The present solution is directed to systems and methods for synchronizing a random seed value among a plurality of multi-core nodes in a cluster of nodes for generating a cookie signature. The cookie signature may be used for protection from SYN flood attacks. A cluster of nodes comprises one master node and one or more other nodes. Each node comprises one master core and one or more other cores. A random number is generated at the master core of the master node. The random number is synchronized across every other core. The random number is used to generated a secret key value that is attached in the encoded initial sequence number of a SYN-ACK packet. If the responding ACK packet does not contain the secret key value, then the ACK packet is dropped.