摘要:
A real-time algorithm for rendering of an inhomogeneous scattering media such as smoke under dynamic low-frequency environment lighting is described. An input media animation is represented as a sequence of density fields, each of which is decomposed into a weighted sum of a set of radial basis functions (RBFs) and an optional residual field. Source radiances from single and optionally multiple scattering are directly computed at only the RBF centers and then approximated at other points in the volume using an RBF-based interpolation. Unique approximation techniques are introduced in the computational algorithms to simplify and speed up the computation of source radiance contributed by single and multiple scattering. Using the computed source radiances, a ray marching technique using slice-based integration of radiance along each viewing ray may be performed to render the final image.
摘要:
Gradient domain editing of animated meshes is described. Exemplary systems edit deforming mesh sequences by applying Laplacian mesh editing techniques in the spacetime domain. A user selects relevant frames or handles to edit and the edits are propagated to the entire sequence. For example, if the mesh depicts an animated figure, then user-modifications to position of limbs, head, torso, etc., in one frame are propagated to the entire sequence. In advanced editing modes, a user can reposition footprints over new terrain and the system automatically conforms the walking figure to the new footprints. A user-sketched curve can automatically provide a new motion path. Movements of one animated figure can be transferred to a different figure. Caricature and cartoon special effects are available. The user can also select spacetime morphing to smoothly change the shape and motion of one animated figure into another over a short interval.
摘要:
Interactive relighting with dynamic reflectance involves relighting a graphical scene with dynamic changes to the reflectance(s) in the graphical scene. A graphical scene may include source radiance, regions having reflectances, a surface spot, incident radiation from the source radiance at the surface sport, an incident direction, a viewing direction, exit radiance, and so forth. In an example embodiment, a graphical scene is relighted based on at least one adjusted reflectance of the graphical scene using an incident radiance at a surface spot that is separated into respective incident radiance components corresponding to different respective numbers of interreflections in the graphical scene. In another example embodiment, a graphical scene is relighted based on at least one adjusted reflectance of the graphical scene using a tensor representation for a reflectance of a surface spot with the tensor representation being segmented into three adjustable factors for lighting, viewing, and reflectance.
摘要:
Mesh quilting for geometric texture synthesis involves synthesizing a geometric texture by quilting a mesh texture swatch. In an example embodiment, geometry is matched between a mesh texture swatch and a portion of a synthesized geometric texture. Correspondences are ascertained between elements of the mesh texture swatch and the portion of the synthesized geometric texture. The ascertained corresponding elements of the mesh texture swatch and the portion of the synthesized geometric texture are aligned via local deformation to create a new patch. The new patch is merged into an output texture space to grow the synthesized geometric texture.
摘要:
A computer implemented method for deforming a 3D polygon mesh using non-linear and linear constraints. The method includes creating a coarse control 3D polygon mesh that completely encapsulates the 3D polygon mesh to be deformed, projecting the deformation energy of the 3D polygon mesh and the constraints of the 3D polygon mesh to the vertices, or subspace, of the coarse control 3D polygon mesh, and determining the resulting deformed 3D polygon mesh by iteratively determining the deformation energy of the subspace. The constraints may be either linear or non-linear constraints, for example, a Laplacian constraint, a position constraint, a projection constraint, a skeleton constraint, or a volume constraint.
摘要:
Surfaces can be decorated with texture tiling and/or texture painting using one or more sample textures, such as BTFs. In a described implementation of texture tiling, a patch-based BTF synthesis algorithm is utilized. In an example embodiment, a mesh of a target surface is re-sampled to produce a dense mesh such that there is a one-to-one correspondence between vertices of the dense mesh and pixels of an image. Patch matching is then employed with a working image that corresponds to a working patch. In an example embodiment, the patch matching is effectuated using translations and rotations of the sample texture. In a described implementation of texture painting, irregular feature(s) of a sample texture are synthesized onto a target surface. In an example embodiment, user-specified constraints as to a desired foreground feature of a sample texture and an intended foreground region of a targeted surface are factored into a graphcut operation.
摘要:
The invention discloses a CMOS image sensor, a timing control method and an exposure method thereof. The image sensor includes a pixel array composed of multiple pixel rows and a control chip controlling the array. The control chip controls each pixel row to expose in the exposure time during one exposure period of the pixel row, and then wait predetermined time after the exposure time to output data. In the invention, the exposure time of the image sensor is separated from the time of outputting data. Therefore, the working mode of the image sensor can be controlled more flexibly. By the manner of controlling the pixel rows in the sub-array of the image sensor to expose synchronously, the flash time of the light source is the same as the exposure time of each single sub-array, thereby improving the utilization efficiency of the source energy and ensuring real-time image sampling.
摘要:
Described is a technology by which a GPU-based photon mapping mechanism/algorithm uses a kd-tree to render arbitrary dynamic scenes. For each frame, the mechanism emits and traces a set of photons into the scene. When a photon hits a surface, it can either be reflected, transmitted, or absorbed based on the surface material. Once photon tracing is done, a kd-tree is built for the stored photons. To estimate the radiance value at an arbitrary surface point, the k-nearest photons are located and filtered. The photon tracing and photon kd-tree construction, as well as the radiance estimation using k-nearest neighbor (KNN) searches are performed on graphics hardware, e.g., a GPU. In one example, only caustic photons are traced, whereby a photon is terminated and stored once it hits a diffuse surface.
摘要:
A remote control system for electronic device and remote control method thereof, the remote control system comprises a controlled apparatus and a remote controller. The controlled apparatus comprises a processing control system (121) and an instruction execution unit (125) in which at least a video capturing device (122,126) connected to the controlled apparatus is also included. At least a characteristic composition is included on the remote controller, at least a video capturing device (122,126) is used for collecting the characteristic composition on the remote controller the processing control system (121) is used for processing the collected characteristic composition images, parsing into the respective instructions, and giving the instruction execution unit (125) the instructions to execute.
摘要:
Described is a technology in which point cloud surface reconstruction is performed via parallel processing on a graphics processing unit, achieving real-time reconstruction rates. An octree is built for a given set of oriented points, with each node containing a set of points enclosed by the node. The data structure is built on the GPU, in parallel, using level-order traversals to process nodes at a same tree level. The surface is reconstructed based on data configured and located via the traversals. To produce the surface, an implicit function over the volume spanned by the octree nodes is computed using the GPU, e.g., based on a Poisson surface reconstruction method. A sparse linear system is built and a multi-grid solver is employed to solve the system. An adaptive marching cubes procedure is performed on the GPU to extract an isosurface of the implicit function as a triangular mesh.