Abstract:
A sensor for acquiring EMG and MMG signals is provided, including a substrate, an inertial sensing element received in a hole of the substrate, a circuit element disposed on the substrate, a plurality of electrical connecting members connecting the inertial sensing element with the substrate, and a sensing ring disposed on the substrate and surrounding the hole. The electrical connecting members are flexible, and the circuit element and the sensing ring are disposed on opposite sides of the substrate.
Abstract:
A physiological signal sensing device for examination of human is provided. The physiological signal sensing device includes a light emitting fiber and a light receiving fiber. The light emitting fiber includes a plurality of light emitting portions, wherein the light emitting fiber provides a plurality of sensing beams, and the sensing beams are respectively emitted through the light emitting portions. The light receiving fiber includes a plurality of light receiving portions. The light receiving fiber corresponds to the light emitting fiber. The sensing beams are emitted through the light emitting portions, reflected or refracted by the human. And then the sensing beams are received by the light receiving portions.
Abstract:
A physiological signal sensing device for examination of human is provided. The physiological signal sensing device includes a light emitting fiber and a light receiving fiber. The light emitting fiber includes a plurality of light emitting portions, wherein the light emitting fiber provides a plurality of sensing beams, and the sensing beams are respectively emitted through the light emitting portions. The light receiving fiber includes a plurality of light receiving portions. The light receiving fiber corresponds to the light emitting fiber. The sensing beams are emitted through the light emitting portions, reflected or refracted by the human. And then the sensing beams are received by the light receiving portions.
Abstract:
A semiconductor structure includes a semiconductor fin on a top surface of a substrate, wherein the semiconductor fin includes a middle section having a first width; and a first and a second end section connected to opposite ends of the middle section, wherein the first and the second end sections each comprises at least a top portion having a second width greater than the first width. The semiconductor structure further includes a gate dielectric layer on a top surface and sidewalls of the middle section of the semiconductor fin; and a gate electrode on the gate dielectric layer.
Abstract:
The present disclosure provides a method of fabricating a FinFET element including providing a substrate including a first fin and a second fin. A first layer is formed on the first fin. The first layer comprises a dopant of a first type. A dopant of a second type is provided to the second fin. High temperature processing of the substrate is performed on the substrate including the formed first layer and the dopant of the second type.
Abstract:
The present invention relates to an interactive gaming method and apparatus with emotion perception ability, by which not only gestures of a user can be detected and used as inputs for controlling a game, but also physiological attributes of the user such as heart beats, galvanic skin response (GSR), etc., can be sensed and used as emotional feedbacks of the game affecting the user. According to the disclosed method, the present invention further provides an interactive gaming apparatus that will interpret the signals detected by the inertial sensing module and the bio sensing module and use the interpretation as a basis for evaluating the movements and emotions of a user immediately, and then the evaluation obtained by the interactive gaming apparatus is sent to the gaming platform to be used as feedbacks for controlling the game to interact with the user accordingly. Therefore, by the method and apparatus according to the present invention, not only the harmonics of human motion can be trained to improve, but also the self-control of a user can be enhanced.
Abstract:
An inductively-coupled plasma etch apparatus and a feedback control method thereof are provided. A voltage/current measuring device is connected to an electrostatic chuck of the plasma etching apparatus, so as to measure the RF current, voltage and the phase angle between them on the electrostatic chuck. The ion current and the RF bias voltage are obtained by calculation of the RF current, voltage and the phase angle. Finally, using the obtained ion current and the RF bias voltage to feedback control the RF power generator in order to achieve the desired plasma status.
Abstract:
Strained channel transistors including a PMOS and NMOS device pair to improve an NMOS device performance without substantially degrading PMOS device performance and method for forming the same, the method including providing a semiconductor substrate; forming strained shallow trench isolation regions in the semiconductor substrate; forming PMOS and NMOS devices on the semiconductor substrate including doped source and drain regions; forming a tensile strained contact etching stop layer (CESL) over the PMOS and NMOS devices; and, forming a tensile strained dielectric insulating layer over the CESL layer.
Abstract:
Disclosed herein are various embodiments of semiconductor devices and related methods of manufacturing a semiconductor device. In one embodiment, a method includes providing a semiconductor substrate and forming a metal silicide on the semiconductor substrate. In addition, the method includes treating an exposed surface of the metal silicide with a hydrogen/nitrogen-containing compound to form a treated layer on the exposed surface, where the composition of the treated layer hinders oxidation of the exposed surface. The method may then further include depositing a dielectric layer over the treated layer and the exposed surface of the metal silicide.
Abstract:
A MOSFET device pair with improved drive current and a method for producing the same to selectively introduce strain into a respective N-type and P-type MOSFET device channel region, the method including forming a compressive stressed nitride layer on over the P-type MOSFET device and a tensile stressed nitride layer on the N-type MOSFET device followed by forming a PMD layer having a less compressive or tensile stress.