Abstract:
A pixel structure of a liquid crystal display panel includes a first transparent substrate, a first data line, a second data line, a transparent electrode, and a compensating conducting pattern layer. In a display region, the first side of the transparent electrode and the first data line partially overlap, forming a first parasitic capacitor, the second side of the transparent electrode and the second data line partially overlap, forming a second parasitic capacitor smaller than the first parasitic capacitor. In a non-display region, the first side of the transparent electrode and the first data line partially overlap, forming a third parasitic capacitor, and the second side of the transparent electrode and the compensating conducing pattern layer partially overlap, forming a fourth parasitic capacitor. The total parasitic capacitance of the first and the third parasitic capacitors and the total parasitic capacitance of the second and the fourth parasitic capacitors are substantially equal.
Abstract:
An liquid crystal method, system and method is provided to optimize the view-angle distribution characteristics of 2D/3D LCDs, wherein the photoactive layers, e.g., parallax, lenticular, etc, have their individual respective distances adjusted. The method also permits the adjustment of the relative prism vertex angles among the photoactive layers to further control the view-angle distribution of the light transmitted to the LDC display means. Moreover, the method, system and method provides for the enhanced, as modified by or in accordance with and as a function of both, scope and distance of human vision and vantage point in 2D/3D LCDs.
Abstract translation:提供了一种液晶方法,系统和方法来优化2D / 3D LCD的视角分布特性,其中诸如视差,透镜等的光活性层具有各自的各自的距离。 该方法还允许调节光敏层之间的相对棱镜顶角,以进一步控制透射到LDC显示装置的光的视角分布。 此外,该方法,系统和方法提供了在2D / 3D LCD中由人类视觉和有利位置的范围和距离进行修改或者根据和作为功能的增强。
Abstract:
A transflective liquid crystal display panel is disclosed. The liquid crystal display panel includes an array substrate and a storage capacitor disposed on the array substrate. The array substrate includes a transmitting region and a reflecting region, in which the storage capacitor is disposed on the reflecting region of the array substrate. The storage capacitor also includes a first transparent conducting layer disposed on the array substrate, a dielectric layer disposed on the first transparent conducting layer, and a reflective conducting layer disposed on the dielectric layer.
Abstract:
The pixel in a transflective color LCD panel of the present invention has an additional sub-pixel area. The pixel is divided into three or more color sub-pixels in R, G, B and at least one sub-pixel M. Each of the color sub-pixels is divided into a transmission area and a reflection area to display color image data. The sub-pixel M can be entirely reflective or partially reflective for displaying a further image data. Two or more algorithms are used to compute the further image data based on the color image data. A selector is used to select one of the algorithms for displaying the further image data. The algorithm selection can be used by a user or automatically selected according to the brightness of ambient light. The transflective LCD panel can be used in a reflective mode when the ambient light reaches a brightness level.
Abstract:
A transflective liquid crystal display device implementing a color filter having various thicknesses. An insulating layer is formed on a lower substrate. A lower electrode is formed on the insulating layer, wherein the lower electrode has a transmissive portion and a reflective portion. An upper substrate opposing the lower substrate is provided, wherein a side of the upper substrate has a color filter having various thicknesses. A planarization layer is formed on the color filter, wherein the planarization layer is opposite to the lower substrate. An upper electrode is formed on the planarization layer. A liquid crystal layer is interposed between the upper and lower substrates.
Abstract:
A backlight module including a first light guide plate, a first light source, a second light guide plate, and a second light source. The first light guide plate includes a first side, a second side opposite to the first side, and a first surface with a micro-groove structure. The first light source is disposed on the first side of the first light guide plate. The second light guide plate is disposed on the first light guide plate, and includes a third side, a fourth side opposite to the third side, and a second surface with a micro-groove structure. The fourth side and the second side are located at the same side. The second light source is disposed on the fourth side of the second light guide plate.
Abstract:
A three-dimensional (3D) display system includes a liquid crystal display and a directional backlight module. The backlight module disposed behind the liquid crystal display includes a light-guide plate, a focusing layer, a left backlight source, a right backlight source, and a first V-shaped micro-grooved and a second V-shaped micro-grooved structures of the light-guide plate. The focusing layer is disposed between the light-guide plate and the liquid crystal display. The 3D display method is to instantly switch on and off the left and the right backlight sources to alternately emit the light from the left side and right side of light-guide plate. By means of the first and the second V-shaped micro-grooved structure, the light transmitted from the light-guide plate is focused by the focusing layer within a particular range of angles and passing through the liquid crystal layer for being alternately projected to form a 3D image.
Abstract:
A Liquid crystal panel comprising a plurality of pixels arranged in a matrix. Each pixel comprises a red sub-pixel, a green sub-pixel, a blue sub-pixel, and an auxiliary sub-pixel with a transflective area.
Abstract:
A display device includes a display panel and at least one driving chip. The display panel has a display region and a non-display region and includes a pixel array, a plurality of pads, a passivation layer, and a plurality of conductive patterns. The pixel array is located in the display region. The pads are located in the non-display region and electrically connected to the pixel array. The passivation layer is located on the pads and has a plurality of through holes. Each of the conductive patterns covers one of the pads and is electrically connected to the pad through at least one of the through holes. A material of the conductive patterns includes a polymer conductive material. The driving chip is located on the display panel and electrically connected to the pads of the display panel.
Abstract:
A display device includes a display panel, a barrier layer, a protective layer, a first optical adhesive layer and a second optical adhesive layer. The barrier layer is disposed above the display panel. The protective layer is disposed above the barrier layer. The first optical adhesive layer with a first thickness is disposed between the display panel and the barrier layer. The second optical adhesive layer with a second thickness is disposed between the protective layer and the barrier layer. The first thickness is larger than the second thickness.