Abstract:
A method for checking a phase shift angle of a PSM is described. A calibration curve of a characteristic value of lithography performance with respect to the phase shift angle of a type of PSM is acquired. The patterns of a PSM of the type to be checked are transferred to a photoresist layer to form photoresist patterns, and the characteristic value is measured. The real phase shift angle of the PSM is derived based on the characteristic value according to the calibration curve.
Abstract:
A lithography method for forming a plurality of patterns in a photoresist layer. A phase shift mask including a plurality of transparent main features, a plurality of first phase shift transparent regions, and a plurality of second phase shift transparent regions is provided. Each transparent main feature is surrounded by the first phase shift transparent regions and the second phase shift transparent regions interlaced contiguously along a periphery of the transparent main feature. Each of the first phase shift transparent regions has a phase shift relative to each of the second phase shift transparent regions. An exposure process is performed to irradiate the phase shift mask with light so that the patterns corresponding to the transparent main features are formed in the photoresist layer.
Abstract:
A method for checking a phase shift angle of a PSM is described. A calibration curve of a characteristic value of lithography performance with respect to the phase shift angle of a type of PSM is acquired. The patterns of a PSM of the type to be checked are transferred to a photoresist layer to form photoresist patterns, and the characteristic value is measured. The real phase shift angle of the PSM is derived based on the characteristic value according to the calibration curve.
Abstract:
A phase shift mask includes a transparent substrate, a semi-dense pattern, and a dense pattern. The semi-dense pattern is formed on the transparent substrate including a plurality of phase shift regions and non-phase shift regions arranged successively. The dense pattern is formed on the transparent substrate including a plurality of non-phase shift regions, phase shift regions, and non-transparent regions.
Abstract:
A manufacture method of a laminated hollow composite cylinder with an arranged ply angle is disclosed. The fiber in the hollow composite cylinder can be arranged in an angle Φ between 30° and 60° according the applications. Prepregs were cut into fan-shaped pieces and laminated in a metal mold to form an annular lamina assembly. The metal mold comprises a concave female mold and a convex male mold that both have a tapered angle complying with the ply angle Φ. Hot press molding with pressure over 140.6 kg/cm2 was then used for solidifying the lamina assembly to produce the composite hollow cylinders with the ply angle Φ. The laminated hollow composite cylinder can achieve excellent thermal and mechanical properties to meet design requirements.
Abstract translation:公开了一种具有布置层叠角度的层压中空复合圆筒的制造方法。 根据应用,中空复合圆筒中的纤维可以以30°和60°之间的角度Phi布置。 将预浸料切成扇形片并层压在金属模具中以形成环形片组件。 金属模具包括凹形阴模和凸形阳模,两者均具有与帘布层角度Phi相符的锥形角度。 然后使用压力超过140.6kg / cm 2的热压成型固化层板组件以制备具有层角度Phi的复合中空圆柱体。 层压中空复合圆筒可以获得优异的热和机械性能,以满足设计要求。
Abstract:
A training method of a digital-analog converter is provided. The digital-analog converter comprises a plurality of parallel capacitors, each of which is floatingly coupled to a plurality of correcting capacitors. Two voltages outputted from the digital-analog converter are received and compared. When a latter output voltage is lower than or equal to a former output voltage, the correcting capacitor is used to correct the capacitor corresponding to the latter output voltage until the latter output voltage is higher than the former output voltage. When the latter output voltage is higher than the former output voltage, a new voltage is outputted from the digital-analog convert and compared with the latter output voltage. The steps of comparing and correcting are repeated until every latter output voltage is higher than every former output voltage.
Abstract:
A contact hole model-based optical proximity correction method. The method includes building a contact hole model from the database obtained through a series of test patterns each having a plurality of contact holes of different line widths but identical distance of separation. Line width offsets due to proximity effect are eliminated by referring to the contact hole model.
Abstract:
A method of optical proximity correction. A main pattern is provided. The main pattern has a critical dimension. When the critical dimension is reduced to reach a first reference value or below, a serif/hammerhead is added onto the main pattern. When the critical dimension is further reduced to a second reference value or below, an assist feature is added onto the main pattern. The corrected pattern is then transferred to a layer on wafer with an improved fidelity.
Abstract:
A method for automatically forming a sub-resolution PSM is provided. The shielding layer is designed by adding an assist feature to a peripheral region of an original shielding layer formed on a quartz substrate. Using an etching process with a etching mask, a portion of the original shielding layer is removed to form an original pattern and an assist feature. The assist feature is separated from the original pattern by a distance. A photoresist layer is tormed on the rim of the shielding layer so that the original pattern, half of the assist feature, and an exposed portion of the quartz substrate between the original pattern and the assist feature are exposed. A selective etching process is performed to etch the exposed portion of the quartz substrate to a certain depth so that it behaves like a phase shifting layer. After removing the photoresist layer, the sub-resolution PSM including the integrated circuit pattern and the assist feature is complete.
Abstract:
A process for globally planarizing the insulator used to fill narrow and wide shallow trenches, used in a MOSFET device, structure, has been developed. The process features smoothing the topography that exists after the insulator filling of narrow and shallow trenches, via use of a two layer planarization composite, consisting of an underlying, anti-reflective coating, which enhances the flow of an overlying photoresist layer. A two phase, RIE procedure is then employed, with the initial phase exposing thick insulator in narrow shallow trench regions, but leaving the two layer planarization composite protecting the thinner insulator in the wide shallow trenches. The second phase of the RIE procedure removes thick insulator, overlying the narrow shallow trenches, resulting in a planarized topography.