Abstract:
The plasma display panel (PDP) includes a front substrate and a second dielectric layer. At least one of the front substrate and the second dielectric layer is formed of a glass material. The glass material includes a transition metal oxide and a rare earth metal oxide. The transition metal oxide is at least one of oxides of cobalt (Co), nickel (Ni), selenium (Se), iron (Fe), manganese (Mn), chromium (Cr), vanadium (V) and scandium (Sc). The rare earth metal oxide is at least one of oxides of praseodymium (Pr), neodymium (Nd), samarium (Sm), dysprosium (Dy) and holmium (Ho).
Abstract:
The present invention relates to a plasma display panel which includes a plasma display panel, a driving circuit for driving the plasma display panel, an electrical signal transmitting wire for electrically connecting an electrode extended from the plasma display panel to the driving circuit, and an adhesive film interposed between the terminal end of the electrical signal transmitting wire and the terminal end of the electrode of the plasma display panel and electrically connecting between terminal ends. The adhesive film includes an anisotropic conductive film layer having a plurality of conductive particles and an insulated dummy at either or both ends of the anisotropic conductive film layer. Alternatively, the adhesive film may include a plurality of conductive particles with an insulated layer on each side.
Abstract:
Disclosed herein are an apparatus and method for collecting vehicle diagnostic information. The apparatus for collecting vehicle diagnostic information includes a conversion unit and an optical multiplexing unit. The conversion unit receives a plurality of frames complying with respective different protocols from a plurality of networks for vehicles, which collects vehicle diagnostic information, in electric signal form, and converts the plurality of frames into a plurality of optical signals having respective different wavelengths based on the wavelengths previously assigned to the respective protocols. The optical multiplexing unit generates a wavelength division multiplexed signal by performing wavelength division multiplexing (WDM) on the plurality of optical signals, and transmits the wavelength division multiplexed signal via an optical cable.
Abstract:
A substrate structure for a plasma display panel (PDP), a method of manufacturing a PDP substrate structure of the PDP, and a PDP including the PDP substrate are provided. The PDP substrate structure includes a substrate, an electrode on the substrate and including a first layer and a second layer, the second layer including an aluminum (Al) material, the first layer being between the substrate and the second layer and including a conductive material, the first layer having lower specific resistance than that of the second layer; and a light absorbable layer on the substrate. The light absorbable layer is an oxidization product of the conductive material of the first layer.
Abstract:
Embodiments of the present invention provide a paste for forming a PDP electrode, a method of manufacturing a PDP electrode using the paste, and a PDP including the electrode. The paste includes an aluminum solution containing aluminum particles and a surface treatment agent. The aluminum particles have an average particle size of about 5 μm or less. The surface treatment agent is configured to withstand sintering temperatures of about 550° C. or greater, and remains on the surface of the aluminum particles after sintering. The electrode manufactured from the paste has a specific resistance of about 20 μΩ·cm or less, making it suitable for use as an electrode in a PDP having a reliability of 90% or greater.
Abstract:
A plasma display including a first electrode and a second electrode formed in parallel is disclosed. The plasma display gradually decreases a voltage at the second electrode from a second voltage to a third voltage while a first voltage is applied to the first electrode during a reset period. The plasma display changes the first voltage according to a change in the discharge firing voltage between the first electrode and the second electrode. The change in the discharge firing voltage may be determined in accordance with an accumulated driving time or a discharge time during the reset period.
Abstract:
Embodiments of the present invention provide a paste for forming a PDP electrode, a method of manufacturing a PDP electrode using the paste, and a PDP including the electrode. The paste includes an aluminum solution containing aluminum particles and a surface treatment agent. The aluminum particles have an average particle size of about 5 μm or less. The surface treatment agent is configured to withstand sintering temperatures of about 550° C. or greater, and remains on the surface of the aluminum particles after sintering. The electrode manufactured from the paste has a specific resistance of about 20 μΩ·cm or less, making it suitable for use as an electrode in a PDP having a reliability of 90% or greater.
Abstract:
A plasma display includes a first substrate and a second substrate disposed substantially in parallel and spaced apart from one another; address electrodes formed on the first substrate; a first dielectric layer formed on a surface of the first substrate and covering the address electrodes; barrier ribs disposed between the first substrate and the second substrate to form compartmentalized discharge cells; phosphor layers formed in the discharge cells; display electrodes comprising a bus electrode disposed on one side of the second substrate opposing the first substrate in a direction crossing the address electrodes; a second dielectric layer formed on a surface of the second substrate and covering the display electrodes; and a protection layer covering the second dielectric layer. At least one electrode, dielectric layer, or carbon layer between an electrode and a neighboring member includes carbon.
Abstract:
A plasma display device includes a plasma display panel (PDP) having electrodes between front and rear substrates, a chassis base on an outer surface of the PDP, a printed circuit board assembly (PBA) on the chassis base, a flexible printed circuit (FPC) connecting the PBA to the electrodes of the PDP, an anisotropic conductive film between terminals of the electrodes and a terminal of the FPC, and a sealing member surrounding the terminals of the electrodes and the terminal of the FPC, the sealing member including a surface hydrophobic modifying layer and an insulation layer.
Abstract:
A composition for forming an electrode including a conductive composite of a first material coated with a metal that has a higher electrical conductivity, wherein the first material is at least one selected from the group consisting essentially of nickel, carbon, and copper.