Systems and methods for predictive switching in audio amplifiers

    公开(公告)号:US10483924B2

    公开(公告)日:2019-11-19

    申请号:US15925469

    申请日:2018-03-19

    Abstract: An audio amplifier circuit for providing an output signal to an audio transducer may include a power amplifier and a control circuit. The power amplifier may include an audio input for receiving an audio input signal, an audio output for generating the output signal based on the audio input signal, and a power supply input for receiving a power supply voltage, wherein the power supply voltage is variable among at least a first supply voltage and a second supply voltage greater than the first supply voltage and wherein the power supply voltage is generated by a configurable charge pump power supply. The control circuit may be configured to predict, based on one or more characteristics of a signal indicative of the output signal, an occurrence of a condition for changing the power supply voltage, and responsive to predicting the occurrence of the condition, change, at an approximate zero crossing of the signal indicative of the output signal, the power supply voltage.

    Noise reduction in voltage reference signal

    公开(公告)号:US10460819B2

    公开(公告)日:2019-10-29

    申请号:US15365451

    申请日:2016-11-30

    Abstract: A variable resistor may be coupled between a reference voltage source and components of an integrated circuit to reduce issues relating to thermal noise from a reference voltage signal generated by the reference voltage source. The variable resistor may be set to a low level during a first time period and a high level during a second time period, in which the time periods correspond to a sampling period of a switched-capacitor circuit. The low resistance time period may allow quick settling of an input reference voltage signal, whereas the high resistance time period may reduce a bandwidth of noise on a sampling capacitor coupled to the reference voltage signal. The variable resistor and switched-capacitor network may be used in an analog-to-digital converter (ADC), such as in audio circuits.

    Reducing audio artifacts in an amplifier with configurable final output stage

    公开(公告)号:US10044323B1

    公开(公告)日:2018-08-07

    申请号:US15651356

    申请日:2017-07-17

    Abstract: An amplifier may include a first stage configured to receive an input signal at an amplifier input and generate an intermediate signal which is a function of the input signal, and a final output stage configured to generate an output signal which is a function of the intermediate signal at an amplifier output, and a signal feedback network coupled between the amplifier output and input. The final output stage may be switchable among a plurality of modes including at least a first mode in which the final output stage generates the output signal as a modulated output signal which is a function of the intermediate signal, and a second mode in which the final output stage generates the output signal as an unmodulated output signal which is a function of the intermediate signal. Control circuitry may reduce audio artifacts associated with switching between modes.

    Low power high precision piecewise linear (PWL) waveform generator

    公开(公告)号:US11451215B1

    公开(公告)日:2022-09-20

    申请号:US17343084

    申请日:2021-06-09

    Abstract: A piece-wise linear (PWL) waveform generator includes a current generator that generates a reference current, an output capacitor across which an output voltage is developed to form a PWL waveform, charging and discharging current sources for charging/discharging the output capacitor based on the reference current, a clock-controlled switch network for controlling the charging/discharging of the output capacitor, and a feedback control loop that senses the output voltage and controls the current generator to vary the reference current based on the output voltage. A first switch controlled by a first clock signal periodically connects/disconnects a current source output to/from a load impedance and a second switch controlled by a second clock signal periodically connects/disconnects a capacitor to/from the current source while disconnected from the load impedance. The capacitor capacitance is based on a predetermined voltage to mitigate glitching when the first switch connects the current source output to the load impedance.

    Multi-chip synchronization in sensor applications

    公开(公告)号:US11366550B2

    公开(公告)日:2022-06-21

    申请号:US16457489

    申请日:2019-06-28

    Abstract: A system may include a plurality of actively-driven inductive sensors and a plurality of control circuits, each control circuit of the plurality of control circuits configured to control operation of a respective set of the actively-driven inductive sensors, each control circuit of the plurality of control circuits communicatively coupled to the other control circuits via a connection configured to distribute synchronization information among the plurality of control circuits. Each of the plurality of control circuits may further be configured to configure a schedule for controlling time-division multiplexed operation of its respective set of actively-driven inductive sensors and control time-division multiplexed operation of its respective set of actively-driven inductive sensors based on the schedule and the synchronization information in order to minimize interference among the plurality of actively-driven inductive sensors.

    Compensation of changes in a resonant phase sensing system including a resistive-inductive-capacitive sensor

    公开(公告)号:US11092657B2

    公开(公告)日:2021-08-17

    申请号:US16354695

    申请日:2019-03-15

    Abstract: A system may include a resonant phase sensing system comprising a resistive-inductive-capacitive sensor and a measurement circuit communicatively coupled to the resistive-inductive-capacitive sensor, and a compensation circuit. The measurement circuit may be configured to use a phase detector to measure phase information associated with the resistive-inductive-capacitive sensor and based on the phase information, determine a displacement of a metal plate relative to the resistive-inductive-capacitive sensor. The compensation circuit may be configured to detect a change in a physical property associated with the resistive-inductive-capacitive sensor other than the displacement and compensate the phase information to correct for the change in the physical property.

Patent Agency Ranking