Abstract:
Presented herein are methodologies for managing a citizens broadband radio service (CBRS) network. The methodology includes at a spectrum access system (SAS), receiving, from a Donor CBRS base station device (CBSD), a registration request, the registration request including capabilities information about a CBRS Relay Node with which the Donor CBSD communicates, in response to the registration request, sending, from the SAS to the Donor CBSD, a registration response indicating successful registration of the CBRS Relay Node, in response to the registration response, receiving via the Donor CBSD a spectrum enquiry message from the CBRS Relay Node seeking a channel allocation from the SAS, and in response to the spectrum enquiry message, sending from the SAS, and via the Donor CBSD, a resource grant response to the CBRS Relay Node, wherein the resource grant response includes an allocated channel and a maximum EIRP for the allocated channel.
Abstract:
Resource Unit (RU) sharing between Access Points in a wireless network is provided by identifying a first Access Point (AP) associated with a first user device, wherein the first AP has won contention for a RU; identifying a second AP associated with a second user device, wherein the first user device and the second user device are located within an overlapping area served by the first AP and the second AP; identifying an unused portion of the RU to which the first AP has not scheduled traffic between the first AP and the first user device; and assigning the unused portion to the second AP for communication between the second AP and the second user device.
Abstract:
Presented herein are methodologies for managing a citizens broadband radio service (CBRS) network. The methodology includes at a spectrum access system (SAS), receiving, from a Donor CBRS base station device (CBSD), a registration request, the registration request including capabilities information about a CBRS Relay Node with which the Donor CBSD communicates, in response to the registration request, sending, from the SAS to the Donor CBSD, a registration response indicating successful registration of the CBRS Relay Node, in response to the registration response, receiving via the Donor CBSD a spectrum enquiry message from the CBRS Relay Node seeking a channel allocation from the SAS, and in response to the spectrum enquiry message, sending from the SAS, and via the Donor CBSD, a resource grant response to the CBRS Relay Node, wherein the resource grant response includes an allocated channel and a maximum EIRP for the allocated channel.
Abstract:
The disclosed technology relates to a process of dynamically assigning operational parameters for access points within a CBRS (Citizen Broadband Radio Service) network. In particular, the disclosed technology monitors for and detects interference between nearby access points and user equipment devices that may belong to the same enterprise or to different enterprises. Machine learning processes are used to revise the operational parameters that were initially assigned by the Spectrum Access System (SAS). These processes are also used to suggest an updated set of operational parameters to the SAS for the access points. The dynamic assignment reduces interference experienced by the access point with respect to nearby other access points and/or nearby other user equipment. The dynamic assignment aims to improve a quality of communication between the access point and its associated user equipment.
Abstract:
Presented herein are methodologies for managing a citizens broadband radio service (CBRS) network. The methodology includes receiving, at an enterprise controller, measurement information from a first user equipment (UE) and a second UE, wherein the first UE and the second UE operate in a citizens broadband radio service (CBRS) network; selecting, at the enterprise controller, an information aggregation level based on a predetermined level of privacy associated with the first UE and the second UE; aggregating, at the enterprise controller, the measurement information from the first UE and the second UE in accordance with the information aggregation level to obtain aggregated measurement information; and sending, by the enterprise controller, the aggregated measurement information to a Spectrum Access System that controls allocation of resources in the CBRS network for the first UE and the second UE.
Abstract:
Techniques and mechanisms for a soft migration from an initial or source Spectrum Access System (SAS) of a source SAS provider to a destination SAS of a destination SAS provider for a base station operative to serve as a Citizens Broadband Radio Service Device (CBSD) in a Citizens Broadband Radio Service (CBRS) network are described. While the base station operates to facilitate communications for one or more user equipments (UEs) and is registered with the source SAS for spectrum access, the base station may communicate in one or more message exchanges for registering with the destination SAS and for receiving from the destination SAS a grant for spectrum access to spectrum according to a plurality of operating parameters. After communicating in a message exchange with the destination SAS in a heartbeat procedure for receiving an authorization to use the granted spectrum, the base station may deregister with the source SAS.
Abstract:
In one example, an apparatus is provided that includes a processor configured to receive, in a first wireless network, an identifier of a base station in a second wireless network, and to determine an identity of a first device in the second wireless network. The apparatus is configured to transmit the identifier of the base station to the second wireless network.
Abstract:
A method provided in one embodiment includes determining a first resource indicator indicative of a first resource capability of a first network element, determining a second resource indicator indicative of a second resource capability of the first network element, determining a third resource indicator indicative of a third resource capability of the first network element, and sending the first resource indicator, the second resource indicator, and the third resource indicator to a second network element. The second network element is configured to determine a first metric value for the first network element based upon the first resource indicator, the second resource indicator, and the third resource indicator. The second network element is further configured to utilize the first metric value to determine a list of one or more acceptable network elements for a wireless device to establish a connection therewith.
Abstract:
A method provided in one embodiment includes determining a first resource indicator indicative of a first resource capability of a first network element, determining a second resource indicator indicative of a second resource capability of the first network element, determining a third resource indicator indicative of a third resource capability of the first network element, and sending the first resource indicator, the second resource indicator, and the third resource indicator to a second network element. The second network element is configured to determine a first metric value for the first network element based upon the first resource indicator, the second resource indicator, and the third resource indicator. The second network element is further configured to utilize the first metric value to determine a list of one or more acceptable network elements for a wireless device to establish a connection therewith.
Abstract:
The disclosed technology relates to a process of dynamically assigning operational parameters for access points within a CBRS (Citizen Broadband Radio Service) network. In particular, the disclosed technology monitors for and detects interference between nearby access points and user equipment devices that may belong to the same enterprise or to different enterprises. Machine learning processes are used to revise the operational parameters that were initially assigned by the Spectrum Access System (SAS). These processes are also used to suggest an updated set of operational parameters to the SAS for the access points. The dynamic assignment reduces interference experienced by the access point with respect to nearby other access points and/or nearby other user equipment. The dynamic assignment aims to improve a quality of communication between the access point and its associated user equipment.