摘要:
Methods of and systems for illuminating objects using planar laser illumination beams (PLIBs) having substantially-planar spatial distribution characteristics that extend throughout the field of view (FOV) of image formation and detection modules employed in such systems. Each PLIB is produced from a planar laser illumination beam array (PLIA) comprising a plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD), a focusing lens, and a cylindrical optical element arranged with each PLIM, which is adjustable relative to other PLIMs so as to permit precise positioning of each PLIM relative to the optical axis of the imaging optics of the image formation and detection module. The individual PLIB components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
摘要:
Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system. Preferably, each planar laser illumination beam component is focused so that the minimum beam width thereof occurs at a point or plane which is the farthest or maximum object distance at which the system is designed to acquire images, thereby compensating for decreases in the power density of the incident planar laser illumination beam due to the fact that the width of the planar laser illumination beam increases in length for increasing object distances away from the imaging optics. By virtue of the present invention, it is now possible to use both VLDs and high-speed CCD-type image detectors in conveyor, hand-held and hold-under type scanning applications alike, enjoying the advantages and benefits that each such technology has to offer, while avoiding the shortcomings and drawbacks hitherto associated therewith.
摘要:
Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system. Preferably, each planar laser illumination beam component is focused so that the minimum beam width thereof occurs at a point or plane which is the farthest or maximum object distance at which the system is designed to acquire images, thereby compensating for decreases in the power density of the incident planar laser illumination beam due to the fact that the width of the planar laser illumination beam increases in length for increasing object distances away from the imaging optics. Advanced high-resolution wavefront control methods and devices are disclosed for use with the PLIIM-based systems in order to reduce the power of speckle-noise patterns observed at the image detections thereof. By virtue of the present invention, it is now possible to use both VLDs and high-speed CCD-type image detectors in conveyor, hand-held and hold-under type imaging applications alike, enjoying the advantages and benefits that each such technology has to offer, while avoiding the shortcomings and drawbacks hitherto associated therewith.
摘要:
Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system. Preferably, each planar laser illumination beam component is focused so that the minimum beam width thereof occurs at a point or plane which is the farthest or maximum object distance at which the system is designed to acquire images, thereby compensating for decreases in the power density of the incident planar laser illumination beam due to the fact that the width of the planar laser illumination beam increases in length for increasing object distances away from the imaging optics. By virtue of the present invention, it is now possible to use both VLDs and high-speed CCD-type image detectors in conveyor, hand-held and hold-under type scanning applications alike, enjoying the advantages and benefits that each such technology has to offer, while avoiding the shortcomings and drawbacks hitherto associated therewith.
摘要:
A hand-supportable planar linear illumination and imaging (PLIIM) based code symbol reading system comprising: a hand-supportable housing having a light transmission aperture; and a planar laser illumination and imaging module (PLIIM), disposed in the hand-supportable housing. The PLIIM includes (i) a linear image detection array having optics providing a field of view (FOV) on said linear image detection array that projects through the light transmission aperture, and (ii) at least one planar laser illumination module (PLIM) for producing a substantially planar laser illumination beam (PLIB) that extends substantially along the same plane as the FOV of the linear image detection array. This arrangement provides a coplanar illumination and imaging plane that projects through the light transmission aperture, for capturing a series of linear (1-D) digital images of an object intersecting therewith during object illumination and imaging operations. An image frame grabber then accesses 1-D digital images therefrom and composes a 2-D digital image of the object. An image data buffer buffers 2-D images received from the image frame grabber, and a decode image processor processes the digital images stored within the image data buffer so as to read one or more code symbols graphically represented in the digital images. A system controller controls the operations within the system.
摘要:
A LED-based planar light illumination and imaging (PLIIM) engine for use in a hand-supportable linear imager adapted for manual movement relative to an object to be illuminated and imaged. The LED-based PLIIM engine comprises an engine housing having a light transmission aperture, and a linear image formation and detection (IFD) module having a linear image detection array with image detection elements and image formation optics having a field of view (FOV) projected through the light transmission aperture into an illumination and imaging field, in which an object is presented for illumination and imaging. A pair of planar light illumination arrays (PLIAs) are arranged on opposite sides of the linear IFD module. Each PLIA includes a plurality of planar light illumination modules (PLIMs) for producing a plurality of spatially-incoherent planar light illumination beam (PLIB) components which are spatially aligned to produce a planar light illumination beam (PLIB) arranged in a coplanar relationship with a portion of the FOV. Each PLIM includes a light emitting diode (LED) and beam focusing and diverging optics for producing one PLIB component. An image frame grabber is provided for grabbing images formed and detected by the linear IFD module. An image data buffer is provided for buffering the grabbed linear images. A controller is provided for controlling the linear IFD module, and the pair of planar light illumination arrays. As the engine housing moves past the object, a series of linear images of the object are sequentially detected by the linear IFD module, grabbed by the image frame grabber, and buffered in the image data buffer for subsequent processing by an image processing computer, so to decode a 1-D or 2-D bar code symbol structure represented within the structure of said two-dimensional image, or recognize character strings or other forms of graphical intelligence represented therewithin.
摘要:
Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system. Preferably, each planar laser illumination beam component is focused so that the minimum beam width thereof occurs at a point or plane which is the farthest or maximum object distance at which the system is designed to acquire images, thereby compensating for decreases in the power density of the incident planar laser illumination beam due to the fact that the width of the planar laser illumination beam increases in length for increasing object distances away from the imaging optics. By virtue of the present invention, it is now possible to use both VLDs and high-speed CCD-type image detectors in conveyor, hand-held and hold-under type scanning applications alike, enjoying the advantages and benefits that each such technology has to offer, while avoiding the shortcomings and drawbacks hitherto associated therewith.
摘要:
An automated object identification and attribute acquisition system comprising a planar light illumination and imaging subsystem (PLIIM) based linear imaging subsystem, and a laser-based object profiling subsystem integrated within a multi-compartment system housing. The system housing has a substantially unitary construction and includes a first optically-isolated compartment formed in its upper deck portion for containing the PLIIM based linear imaging subsystem and associated components therewithin. The system housing also includes a second optically-isolated compartment formed in its lower deck portion, disposed below the first optically-isolated compartment; for containing the laser-based object profiling subsystem and associated components therewithin. First and second light transmission apertures are formed in the first optically-isolated compartment, for enabling the transmission of a planar laser illumination beam (PLIB) from the PLIIM based linear imaging sybsystem, and towards the object to be illuminated. A third light transmission aperture is formed in the first optically-isolated compartment, and spatially aligned with the first and second light transmission apertures, for enabling the field of view (FOV) of a linear image detection array provided in the PLIIM-based linear imaging subsystem, to project from the linear image detection array towards the illuminated object to be imaged. A fourth light transmission aperture is formed in the second optically-isolated compartment, and spatially distanced from the first optically-isolated compartment, for enabling the transmission of one or more laser scanning beams from the laser-based object profiling subsystem, towards the object being illuminated and imaged. By virtue of the present invention, it is now possible to automatically identify a moving object such as a package moving along a conveyor belt structure, and acquire geometrical and surface attributes thereof, using a single integrated device of substantially unitary construction, thereby simplifying system installation, set-up and maintenance in diverse field of operation
摘要:
Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system. Preferably, each planar laser illumination beam component is focused so that the minimum beam width thereof occurs at a point or plane which is the farthest or maximum object distance at which the system is designed to acquire images, thereby compensating for decreases in the power density of the incident planar laser illumination beam due to the fact that the width of the planar laser illumination beam increases in length for increasing object distances away from the imaging optics. By virtue of the present invention, it is now possible to use both VLDs and high-speed CCD-type image detectors in conveyor, hand-held and hold-under type scanning applications alike, enjoying the advantages and benefits that each such technology has to offer, while avoiding the shortcomings and drawbacks hitherto associated therewith.
摘要:
A planar laser illumination and imaging (PLLIM) based camera system capable of producing digital images with reduced levels of speckle-pattern noise. The PLIIM based camera system comprises a planar laser illumination array (PLIA) including a plurality of laser diodes for producing and projecting a planar laser illumination beam (PLIB), so as to illuminate an object as it is moving past said PLIIM based camera system. An image formation and detection (IFD) module is provided having a image detection array and imaging forming optics for providing the image detection array with a field of view (FOV). The PLIB and FOV are arranged in a coplanar relationship along the working range of the PLIIM based camera system so that the PLIB illuminates primarily within the FOV of the IFD module. A speckle-pattern noise reduction subsystem is integrated with the PLIA, for reducing the temporal-coherence of said planar laser illumination beam (PLIB) before the PLIB illuminates a target object. The speckle-pattern noise reduction subsystem carries out a temporal phase modulation technique during the transmission of the PLIB towards the target, so that the object is illuminate with a temporally coherent-reduced planar laser illumination beam (PLIB) and numerous substantially different time-varying speckle-noise patterns are produced at the image detection array over the photo-integration time period thereof. The numerous substantially different time-varying speckle-noise patterns are detected at the image detection array over the photo-integration time period, and the detected speckle-noise patterns are temporally averaged at said image detection array during the photo-integration time period thereof. As a result of such temporal averaging, the RMS power of observable speckle-noise patterns is reduced at the image detection array. By virtue of the present invention, it is now possible to enjoy the benefits of using laser-based illumination during high-speed imaging operations, without the adverse effects associated with speckle-pattern noise.