Abstract:
A process for debundling a carbon fiber tow into dispersed chopped carbon fibers suitable for usage in molding composition formulations is provided. A carbon fiber tow is fed into a die having fluid flow openings, through which a fluid impinges upon the side of the tow to expand the tow cross sectional area. The expanded cross sectional area tow extends from the die into the path of a conventional fiber chopping apparatus to form chopped carbon fibers, or through contacting tines of a mechanical debundler. Through adjustment of the relative position of fluid flow openings relative to a die bore through which fiber tow passes, the nature of the fluid impinging on the tow, the shape of the bore, in combinations thereof an improved chopped carbon fiber dispersion is achieved. The chopped carbon fiber obtained is then available to be dispersed in molding composition formulations prior to formulation cure.
Abstract:
A process for automated sanding of a vehicle component surface is provided and includes providing a sanding mechanism having a sanding head engaged with a housing, a rotary motor contained within the housing, the rotary motor having a drive shaft rotatable about an axis and extending outwardly therefrom, a radial plate attached to a first end of the drive shaft, and a sanding disk having an abrasive surface releasably attached to the radial plate; attaching the sanding head to a gimbal having a pressure sensor; powering the rotary motor driving rotation of the drive shaft, the radial plate and the sanding disk in at least one of a clockwise or counterclockwise direction; movably applying the sanding disk to the surface at a maintained constant pressure; and achieving a desired finish on the surface prepared to be primed and painted to a class A auto high sheen surface finish.
Abstract:
A vehicle component is provided that includes a first cured layer of a molding composition having a predominant fiber filler chopped glass fibers, a second cured layer of molding composition having a predominant fiber filler chopped carbon fibers, and an elastomeric bonding agent with elongation properties configured to accommodate the differential coefficients of linear thermal expansion between the first cured layer and the second cured layer. The second cured layer is substantially devoid of glass fiber. The bonding agent is an elastomeric adhesive, which is operative from −40 to 205° C. The first cured layer forms an outer skin layer surface of a vehicle and the second cured layer forms an interior layer, where the outer skin layer surface has a class-A finish.
Abstract:
A process and system are provided for introducing a blend of chopped and dispersed fibers on an automated production line amenable for inclusion in molding compositions as a blended fiber mat for structural applications. The blend of fibers are simultaneously supplied to an automated cutting machine illustratively including a rotary blade chopper disposed above a vortex supporting chamber. The blend of chopped fibers and binder form a chopped mat. The chopped mat has a veil mat placed on either side, and is consolidated with the veil mat using heated rollers maintained at the softening temperature of thermoplastic binder, with consolidated mats being amenable to being stored in rolls or as flat sheets. A charge pattern is made using the consolidated mat, and the charge pattern can be compression molded in a mold maintained at a temperature lower than the melting point of the thermoplastic fibers.
Abstract:
A system for debundling fiber tow into chopped fibers is provided that has one or more reels of fiber tow, a cutting element configured to receive the fiber tow to form chopped fiber, and a tube with introduced gas flow configured to receive the chopped fiber. A moving belt is positioned under the tube to collect the chopped fiber. A dispenser is positioned along the moving belt for applying a binder or additive. A treatment chamber receives the treated chopped fiber. A process for debundling fiber tow into chopped fibers is provided that supplies one or more reels of fiber tow to a cutting system, drops the chopped fiber into a tube with introduced gas flow to debundle the chopped fiber with a vortex, collects the chopped fiber exiting the tube onto a moving belt, chemically treats the chopped fiber, and provides the chemically treated chopped to a treatment chamber.
Abstract:
A vehicle component is provided that includes a first cured layer of a molding composition having a predominant fiber filler chopped glass fibers, a second cured layer of molding composition having a predominant fiber filler chopped carbon fibers, and a bonding agent with elongation properties configured to accommodate the differential coefficients of linear thermal expansion between the first cured layer and the second cured layer. The second cured layer is substantially devoid of glass fiber. The bonding agent is an elastomeric adhesive, which is operative from −40 to 205° C. The first cured layer forms an outer skin layer surface of a vehicle and the second cured layer forms an interior layer, where the outer skin layer surface has a class-A finish.
Abstract:
A process for debundling a carbon fiber tow into dispersed chopped carbon fibers suitable for usage in molding composition formulations is provided. A carbon fiber tow is fed into a die having fluid flow openings, through which a fluid impinges upon the side of the tow to expand the tow cross sectional area. The expanded cross sectional area tow extends from the die into the path of a conventional fiber chopping apparatus to form chopped carbon fibers, or through contacting tines of a mechanical debundler. Through adjustment of the relative position of fluid flow openings relative to a die bore through which fiber tow passes, the nature of the fluid impinging on the tow, the shape of the bore, in combinations thereof, an improved chopped carbon fiber dispersion is achieved. The chopped carbon fiber obtained is then available to be dispersed in molding composition formulations prior to formulation cure.
Abstract:
A process for debundling a carbon fiber tow into dispersed chopped carbon fibers suitable for usage in molding composition formulations is provided. A carbon fiber tow is fed into a die having fluid flow openings, through which a fluid impinges upon the side of the tow to expand the tow cross sectional area. The expanded cross sectional area tow extends from the die into the path of a conventional fiber chopping apparatus to form chopped carbon fibers, or through contacting tines of a mechanical debundler. Through adjustment of the relative position of fluid flow openings relative to a die bore through which fiber tow passes, the nature of the fluid impinging on the tow, the shape of the bore, in combinations thereof, an improved chopped carbon fiber dispersion is achieved. The chopped carbon fiber obtained is then available to be dispersed in molding composition formulations prior to formulation cure.
Abstract:
A molding composition formulation is provided that includes polypropylene, glass fiber, and a polypropylene substitute including recycled sheet molding composition transfer film. The polypropylene substitute is present from 1 to 35 total weight percent also may include natural cellulosic fibers or powders. A process is provided by which the polypropylene substitute is mixed and homogenized and then mixed with polypropylene and additives, and thereafter glass fiber. A reduction in the amount of virgin polypropylene used is reduced compared to conventional thermoplastic glass fiber filled moldings.
Abstract:
A molding composition formulation is provided that includes polypropylene, glass fiber, and a polypropylene substitute including recycled sheet molding composition transfer film The polypropylene substitute is present from 1 to 35 total weight percent also may include natural cellulosic fibers or powders. A process is provided by which the polypropylene substitute is mixed and homogenized and then mixed with polypropylene and additives, and thereafter glass fiber. A reduction in the amount of virgin polypropylene used is reduced compared to conventional thermoplastic glass fiber filled moldings.