Abstract:
A process is provided for thermal molding an article with at least one layer of thermoplastic fibers that are non-woven and uni-directionally oriented in combination with at least one layer of reinforcing fibers. The reinforcing fibers including glass, carbon, nature based, and combinations thereof; alone or mixed with chopped thermoplastic fibers. Upon subjecting the layers to sufficient heat to thermally bond in the presence of non-oriented filler fibers, thermoplastic fiber fusion encapsulates the filler fibers. The filler fibers impart physical properties to the resulting article and the residual unidirectional orientation of the thermoplastic melt imparts physical properties in the fiber direction to the article. By combining layers with varying orientations of uni-directional fibers relative to one another, the physical properties of the resulting article may be controlled and extended relative to conventional thermoplastic moldings. The uni-directional fibers may have discontinuities along the length of individual fibers.
Abstract:
A process and system are provided for introducing a blend of chopped and dispersed fibers on an automated production line amenable for inclusion in molding compositions as a blended fiber mat for structural applications. The blend of fibers are simultaneously supplied to an automated cutting machine illustratively including a rotary blade chopper disposed above a vortex supporting chamber. The blend of chopped fibers and binder form a chopped mat. The chopped mat has a veil mat placed on either side, and is consolidated with the veil mat using heated rollers maintained at the softening temperature of thermoplastic binder, with consolidated mats being amenable to being stored in rolls or as flat sheets. A charge pattern is made using the consolidated mat, and the charge pattern can be compression molded in a mold maintained at a temperature lower than the melting point of the thermoplastic fibers.
Abstract:
A process for debundling a carbon fiber tow into dispersed chopped carbon fibers suitable for usage in molding composition formulations is provided. A carbon fiber tow is fed into a die having fluid flow openings, through which a fluid impinges upon the side of the tow to expand the tow cross sectional area. The expanded cross sectional area tow extends from the die into the path of a conventional fiber chopping apparatus to form chopped carbon fibers, or through contacting tines of a mechanical debundler. Through adjustment of the relative position of fluid flow openings relative to a die bore through which fiber tow passes, the nature of the fluid impinging on the tow, the shape of the bore, in combinations thereof, an improved chopped carbon fiber dispersion is achieved. The chopped carbon fiber obtained is then available to be dispersed in molding composition formulations prior to formulation cure.
Abstract:
A dual layer cured composite article is provided that has an outer part having an outer part thickness composed of a first resin matrix having between 50 and 70 total weight percent of the outer part being an outer part mixed fiber filler, the outer part mixed fiber filler having an outer part primary fiber:carbon fiber ratio of 0.05-20:1. An inner part complementary to the outer part is provided and has an inner part thickness composed of a second resin matrix having between 40 and 60 total weight percent of the inner part of an inner mixed fiber filler, the inner mixed fiber filler having an inner part primary fiber:carbon fiber ratio of less than said outer part primary fiber:carbon fiber ratio. A joinder between the outer part and the inner part is provided. A process for producing such an article is also provided.
Abstract:
A process for resin transfer molding (RTM) with staggered injection of a resin is provided that injects resin into a plurality of injection ports of a mold. The temperature and pressure applied to the mold are controlled during injection to limit promote rapid filling of the mold cavity. The injection ports are activated for injecting the resin in any order of individually, in groups, or pairings. Fibers are readily added to the mold separately or within the resin. Cycle times of from 1 to 5 minutes are provided for the process.
Abstract:
A molded article is provided that has a resin matrix having a surface, the resin matrix formed from cross-linked polyester resin or vinyl-ester resin. Glass fibers are crossed linked to the resin matrix via a silane coupling agent reactive with the matrix. A molded article is provided that has a resin matrix having a surface, the resin matrix formed from cross-linked polyester resin or vinyl-ester resin. Glass fibers each covalently bonded to at least one microspheroid matrix via a silane coupling agent reactive with a surface of the at least one microspheroids are present in increase the fiber pull strength. A sizing composition for treating glass fibers is also provided for use in such articles.
Abstract:
A polyurea additive is provided that strengthens a given base sheet molding composition (SMC) An isocyanate containing species and an amine containing species are introduced into an uncured polymeric resin of a sheet molding compound (SMC) under conditions suitable for the formation of a polyurea polymer network. Upon cure of the SMC base resin, an interpenetrating network is formed that is stronger than the base SMC absent the polyurea. As a result, an article is formed from the SMC that is stronger at the same dimensions than a conventional article or thinned to achieve the same properties to obtain a lightweight article compared to that formed from conventional SMC. The properties of the article are also attractive relative to aluminum for the formation of vehicle body and exterior panels.
Abstract:
A molded article is provided that includes a resin matrix having a surface, the resin matrix formed from cross-linked polyester resin or vinyl-ester resin. Microspheroids having a mean diameter of from 16 to 45 microns are embedded in the resin matrix. The microspheroids having a specific gravity of between 0.19 and 0.6 and an isotactic crush strength of greater than or equal to 2750 kilopascals (kPa). Surface activating agent alkoxysilane molecules are covalently bonded to each of the microspheroids. Filler particles are also present in the resin matrix. Fibers are also present in the resin matrix. The fibers being natural fibers, glass fibers, carbon fibers, or a combination thereof. The article has a specific gravity of between 0.80 and 1.25.
Abstract:
A process of formulating a curable thermoset resin formulation is provided that includes reacting a natural cellulosic filler with at least one of: a silsesquioxane, a isocyanate, a base, or an organic acid to form a reduced hydrophilicity filler. By intermixing the resulting reduced hydrophilicity filler with a thermoset cross linkable polymeric resin, a curable thermoset resin formulation is formed that has superior properties to conventional formulations in terms of density and environmental impact. The formulation properties in terms of strength of the cured article are improved relative to untreated natural fillers. The treatment is advantageous relative to plasma treatment. An article is also provided produced upon cure of the formulation.
Abstract:
A vehicle component is provided that includes a first cured layer of a molding composition having a predominant fiber filler chopped glass fibers, a second cured layer of molding composition having a predominant fiber filler chopped carbon fibers, and a bonding agent with elongation properties configured to accommodate the differential coefficients of linear thermal expansion between the first cured layer and the second cured layer. The second cured layer is substantially devoid of glass fiber. The bonding agent is an elastomeric adhesive, which is operative from −40 to 205° C. The first cured layer forms an outer skin layer surface of a vehicle and the second cured layer forms an interior layer, where the outer skin layer surface has a class-A finish.