Abstract:
An illumination system includes a solid-state light-emitting element and a wavelength-converting device. A first waveband light is emitted to an optical path by the solid-state light-emitting element. The wavelength-converting device is disposed on the optical path and includes a phosphor plate. The phosphor plate is a solid mixture having a phosphor agent and a binder. The weight percent of the phosphor agent is from 10 to 70, such that the first waveband light is transformed into a second waveband light. Under this circumstance, the efficiency of heat conduction of the phosphor plate is effectively enhanced, thereby enhancing the converting efficiency of the wavelength-converting device, which is strong enough to be applied to rotate with great rigidity. Meanwhile, not only the space requirement is reduced, but also the phenomena of hot spot and heat diffusion are avoided, such that the cost and difficulty of manufacturing the wavelength-converting device are significantly reduced.
Abstract:
A wavelength conversion device includes a substrate, a reflective member, and a wavelength conversion member. The reflective member is disposed on the substrate and includes a continuous-phase material and nano particles. The nano particles are distributed in the continuous-phase material. A refractive index of the continuous-phase material is different from a refractive index of the nano particles. The wavelength conversion member is disposed on the reflective member. The reflective member is configured to reflect the light converted from the wavelength conversion member to output.
Abstract:
The disclosure provides a method for regulating a light wavelength of a projection device. The method comprises the following steps. A single-color light source is provided and emits a first chromatic light. A phosphor layer is formed on an optical path of the single-color light source, so that the first chromatic light transmits the phosphor layer. The phosphor layer transforms a part of the first chromatic light to a second chromatic light, and emits the residual first chromatic light. The residual first chromatic light is further mixed with the second chromatic light to generate a third chromatic light. The wavelength of the third chromatic light is regulated by adjusting the proportion of the luminous intensity of the residual first chromatic light and the second chromatic light.
Abstract:
A fluoride fluorescent composition contains a tetravalent manganese ion and 2.7 to 7 fluorine atoms, among which the tetravalent manganese ion is doped so as to be a luminescent center. By the advantage of thermal stability of the fluoride fluorescent composition, the luminance, the purity and the quality of projection of the projector are enhanced.
Abstract:
A wavelength conversion element includes a substrate, a reflective layer, an inorganic light luminescence layer and an organic light luminescence layer. The reflective layer is disposed over the substrate. The inorganic light luminescence layer is disposed over the reflective layer and includes a first fluorescent material. The organic light luminescence layer is disposed between the reflective layer and the inorganic light luminescence layer, and includes a second fluorescent material. A refractive index of the inorganic light luminescence layer is greater than that of the organic light luminescence layer, and a thickness of the inorganic light luminescence layer is greater than a thickness of the organic light luminescence layer.
Abstract:
A diffuser includes a first substrate and a gel layer. The first substrate has a first refractive index n1. The gel layer includes a body and at least one microstructure. The body is disposed on the first substrate. The microstructure is disposed on the body, wherein the dimension of the microstructure is smaller than that of the body. The body is located between the microstructure and the first substrate. The gel layer has a second refractive index n2, and n1>n2.
Abstract:
A phosphor device of an illumination system emitting a first waveband light and having an optical path includes a first section and a first phosphor agent. The first phosphor agent is coated on the first section. The first waveband light is received and converted into a second waveband light by the first phosphor agent. The second waveband light is directed to the optical path. The range of the spectrum of the second waveband light includes at least a first color light and a second color light, so that the first color light or the second color light is separated from the second waveband light along the optical path. Therefore, the diversity of the design of the phosphor device is enhanced, the manufacturing cost and the size of product are reduced, and the color purity is enhanced.
Abstract:
A phosphor wheel includes a substrate, at least a phosphor agent and a plurality of vortex generators. The substrate has a first region and a second region. The second region has a plurality of openings. The phosphor agent is disposed on the first region for converting the wavelength of waveband light. Each vortex generator includes at least a guide vane. Each guide vane is disposed on the second region, and the projection, which is on the second region, of each guide vane is corresponded to one of the openings, such that a vortex is generated during a rotation of the substrate. Therefore, the efficiency of heat exchange is enhanced, the temperature of light spot is reduced, and further the output efficiency of light of the phosphor agent is increased.
Abstract:
A laser light source for projector includes a laser light source module, first and second light receiving modules, a phosphor wheel, and a light combining module. The phosphor wheel has a first and a second side. The phosphor wheel receives the laser and converts the laser into first and second fluorescent light. The phosphor wheel receives the laser at a first side and emits the first fluorescent light. The phosphor wheel emits the second fluorescent light at a second side. After the first fluorescent light and the second fluorescent light passes through the first and second light receiving modules, at least one of the directions of optical axes of the first and second fluorescent light is changed. The light combining module receives the first and second fluorescent lights and emits a combined light.
Abstract:
A phosphor device of an illumination system, which emits a first waveband light, includes a substrate and a first phosphor layer. The first phosphor layer includes a first phosphor agent and a second phosphor agent. The first phosphor agent is formed on the substrate for converting the first waveband light into a second waveband light. The second waveband light comprises a first color light and a second color light. The second phosphor agent is distributed over the first phosphor agent for converting the first waveband light into the second color light so as to increase the luminous intensity of the second color light. Therefore, the luminous intensity of the second color light can be effectively increased.