Abstract:
A heat flow distribution measurement device includes a sensor module having one multilayer substrate and a plurality of heat flow sensor portions arranged inside of the multilayer substrate. The multilayer substrate has one surface and another surface opposite to the one surface and includes a plurality of stacked insulating layers each formed of a thermoplastic resin. The heat flow sensor portions are each formed of thermoelectric conversion elements and are thermoelectrically independent. An arithmetic portion arithmetically determines a heat flow distribution based on an electromotive force generated in each of the heat flow sensor portions. The thermoelectric conversion elements are formed in the multilayer substrate and therefore manufactured by the same manufacturing process for manufacturing the multilayer substrate. This can minimize the performance difference between the individual thermoelectric conversion elements and allow the heat flow distribution to be measured with high precision.
Abstract:
A converter includes a first insulating substrate having a first surface on which a wiring pattern is formed, a second insulating substrate integrated with the first insulating substrate, and a plurality of thermoelectric conversion elements of the same conductivity type arranged between the first and second insulating substrates and connected in series via the wiring pattern. The wiring pattern includes a plurality of first connecting portions formed in a first region of the first insulating substrate, a plurality of second connecting portions formed in a second region thereof, and a plurality of coupling portions coupling the first connecting portions to the second connecting portions, to connect a set of first and second connecting portions to thermoelectric conversion elements. The coupling portions each couple, in adjacent thermoelectric conversion elements, a first connecting portion connected to one of the thermoelectric conversion elements to a second connecting portion connected to the other of the thermoelectric conversion elements.
Abstract:
A heater apparatus includes a main body, a detecting unit, and a control part. The main body has a power supply part to which electric power is supplied and a heating portion connected to the power supply part to generate heat by electric power supplied from the power supply part. The detecting unit detects an object around the main body. The control part controls supply amount of the electric power to the power supply part. The control part controls the supply amount of electric power to the power supply part to be reduced compared with a normal state when the detecting unit detects that the object is within a predetermined range of the main body.
Abstract:
A position change measuring device which measures a change in position of a target object and includes a base member, a press member which is movable following a change in position of the target object, an elastic member which produces heat when contracting or absorbs heat when expanding, a heat flux sensor which outputs a signal as a function of a rate of heat flux transferred inside or outside the elastic member, and a diaphragm unit which is made of elastically deformable material. The diaphragm unit is retained by the base member in contact with the press member and works to produce force of resilience to recover the elastic member to its initial state when the elastic member contracts or expands in response to movement of the press member. This structure improves a response rate for sensing a change in position of the target object with high accuracy.
Abstract:
An abnormality diagnostic apparatus includes: a heat flux sensor that detects heat flux generated by a measurement target continuously from the start of operation of the measurement target or at predetermined time intervals; and a control device that determines whether there is an abnormality based on the result of the detection by the heat flux sensor. In the event of an abnormality in a facility, heat flux generated from the facility by at least one of current, voltage, sound, vibration, and friction changes. Therefore, the use of the heat flux sensor makes it possible to determine the presence or absence of an abnormality in the measurement target without using a plurality of kinds of sensors to measure current, voltage, sound, vibration, and friction.
Abstract:
In a runout detection device for detecting runout of a rotating member, a displacement unit abuts on the rotating member, and is displaced in accordance with displacement of the rotating member while the rotor abuts on the displacement unit. An elastic member elastically deforms in accordance with displacement of the displacement unit. A heat flux sensor detects a heat flux generated by elastic deformation of the elastic member. The runout detection device is configured to detect runout of the rotating member based on the heat flux detected by the heat flux sensor.
Abstract:
A load change detection apparatus is provided with a base member, an elastic member, a first plate, a fixing member and heat flow sensors. The elastic member deforms according to a changed load applied to the elastic member, received by the receiving member. The first plate supports a surface of the elastic member on a side of the base member. The fixing member fixes the lower plate and the elastic member to the base member. The heat flow sensors, provided between the base member and the lower plate, output signals according to heat flowing between the lower plate and the base member. The heat flows due to heat generated or heat absorbed when the elastic member changes the elasticity shape thereof. Stress occurring when the elastic member deforms, is shut off by the first plate, thus direct transmission of the stress to the heat flow sensors is avoided.
Abstract:
A heat flux sensor is installed in such a way that heat flux emanating from a biological object present at a predetermined position is detectable. It is determined whether or not a biological object is present at the predetermined position by comparing sensing results of the heat flux sensor with determination criteria. The determination criteria is preset according to heat flux that can be sensed when a biological object is present at the predetermined position. When the sensing results of the heat flux sensor satisfy the determination criteria, in other words, when the heat flux sensed by the heat flux sensor is the heat flux emanating from a biological object, it is determined that a biological object is present at the predetermined position. Consequently, it is possible to realize accurate detection of a biological object.
Abstract:
A tension measuring apparatus includes a displacement part that is displaced in accordance with tension or a change of the tension of a wire rod to be measured when the displacement part is caused to abut against the wire rod to receive the tension of the wire rod, an elastic body that is elastically deformed in accordance with displacement of the displacement part, and a heat flow sensor that detects a heat flow caused by elastic deformation of the elastic body.
Abstract:
A monitoring device monitors a forming machine (target device). The forming machine includes a housing, a bearing attached to the housing, and a shaft placed radially inside the bearing. The monitoring device includes a plurality of heat flux sensors and a detector. The heat flux sensors are provided on the radially outer side of the bearing and spaced from each other in the circumferential direction of the bearing. The heat flux sensors output a signal corresponding to heat fluxes through faces thereof on the bearing side and faces thereof on the other side. The detector detects a load applied radially to the shaft or bearing, based on the output from the heat flux sensors.