Abstract:
A method of manufacturing a thermoelectric converter includes filling each of a plurality of through-holes in each of a plurality of resin films with fillers containing a plurality of thermoelectric material particles. At this time, a part of the filler is extruded from each through-hole. In this state, the plurality of resin films are stacked together. A top-surface protection member having top-surface conductor patterns is stacked on one side of the plurality of resin films. A back-surface protection member having back-surface conductor patterns is stacked on the other side of the plurality of resin films. Thus, an integrated stacked body is formed. The integrated stacked body is then heated and pressurized. A plurality of thermoelectric material particles are thereby sintered to form the first and second thermoelectric members.
Abstract:
A heat flux sensor module includes: a first film including a first surface; a plurality of sensor chips which are disposed spaced apart from each other on the first surface and detect heat flux; a second film stacked on the first surface of the first film so that the plurality of sensor chips are sandwiched between the first film and the second film; and a heat conducting member which is disposed between adjacent sensor chips and has higher heat conductivity than air. The heat conducting member is in contact with both the first film and the second film.
Abstract:
A wind direction meter has the following plurality of sensors and a control unit. Each sensor has a first surface and has first and second interlayer connection members made of different metals or semiconductors. Further, the wind direction meter includes a thermoelectric conversion element which generates an electrical output when a temperature difference occurs between first ends and second ends of the respective first and second interlayer connection members. The sensor generates an electric output when the surrounding air, whose temperature has been changed by a heater, is moved by the wind to produce a temperature difference between the first ends and the second ends of the first and second interlayer connection members. The control unit calculates the direction of the wind on the basis of the difference in output. Thus, the wind direction of a weak wind can be detected with the wind direction meter.
Abstract:
A comfortable temperature control apparatus for a vehicle includes a temperature-change element that changes a temperature by being energized; a heat flux sensor outputting a sensor signal corresponding to a heat flux; a heat diffusion layer disposed on the heat flux sensor; and a control unit that energizes the temperature-change element so as to adjust its temperature. In a seat provided in the vehicle cabin, a cover surface side contacting a passenger, the heat diffusion layer, the heat flux sensor and the temperature-change element are arranged in this order. The heat flux sensor outputs the sensor signal to the control unit, the sensor signal corresponding to the heat flux between the cover surface and the temperature-change element. The control unit adjusts an energization of the temperature-change element, based on the sensor signal, such that the heat flux between the cover surface and the temperature-change element is a predetermined value.
Abstract:
There is provided a heat flux sensor with first and second interlayer connection members composed of different metals from each other of which metal atoms maintain a predetermined crystal structure embedded in first and second via holes of a thermoplastic resin made insulating substrate, the first and the second interlayer connection members are connected in series alternately, and a control unit that performs abnormality determination of a heating element disposed in a vehicle. The heat flux sensor is provided to the heating element and outputs a sensor signal corresponding to heat flux between the heating element and an outside air, and the control unit determines based on the sensor signal that there is abnormality in the heating element when the heat flux between the heating element and the outside air is out of a predetermined range.
Abstract:
A vibration detector has a structure including a heat generation member which generates heat when subjected to at least one of deformation and friction by external vibration and a detection element for detecting a heat flux from the heat generation member, and configured to detect data regarding vibration based on a detection result of the detection element. The detection element has a structure in which an insulation base material made of thermoplastic resin is formed with first and second via holes penetrating therethrough in a thickness direction, first and second inter-layer connection members formed of different metals are embedded in the first and second via holes, and the first and second inter-layer connection members are connected in series alternately, the metals forming the first and second inter-layer connection members being sintered alloys sintered in a state in which metal atoms maintain a crystal structure thereof.
Abstract:
An measuring instrument for a physiological heat quantity emitted from a human body includes a heat flux sensor, and a calculator. The heat flux sensor includes a sensor main body portion and a moisture absorbing member. The sensor main body portion has multiple through holes penetrating through the sensor main body portion from a first surface to a second surface. The sensor main body portion is disposed on a human body such that the first surface is adjacent to the human body when in use, and outputs a sensor signal according to a heat flux passing through the sensor main body portion from the first surface toward the second surface. The moisture absorbing member is stacked on the second surface of the sensor main body portion. The calculator calculates the physiological heat quantity based on the sensor signal.
Abstract:
In a preparatory process of a method of manufacturing a multilayer substrate, an insulating substrate is prepared, with a conductor pattern formed only on one surface of the insulating substrate. At that time, the conductor pattern is constituted of the Cu element, a Ni layer is formed on the surface of the conductor pattern that is on the side of the insulating substrate. In a first forming process, a via hole having the conductor pattern as the bottom thereof is formed in the insulating substrate. At that time, the Ni layer that is in the area of the bottom is removed. In a filling process, a conductive paste is filled in the interior of the via hole. In a second forming process, a stacked body is formed by stacking a plurality of the insulating substrates. In a third forming process, the stacked body is heated while being subjected to pressure.
Abstract:
Resin films, all of which are formed of the same resin material, are laminated to form a laminate. Heat and pressure are applied to the laminate to integrate the resin films into one piece; then the pressure applied to the laminate is released and the laminate is cooled. In a predetermined region of the laminate which is to constitute a bent part, one or more of the resin films are arranged on each of one side and the other side in a lamination direction of the resin films with respect to one conductor pattern; and the total thickness of the one or more resin films arranged on the one side is larger than the total thickness of the one or more resin films arranged on the other side. Consequently, the predetermined region can be bent by utilizing the difference between contraction force generated in the one or more resin films arranged on the one side and contraction force generated in the one or more resin films arranged on the other side during the cooling after the application of heat and pressure.
Abstract:
A liquid level detector includes: a detecting element having one surface and the other surface opposite to the one surface, the one surface being opposed to a liquid, while being parallel to a height direction of liquid level; a Peltier element provided on the other surface side of the detecting element; and a control unit performing a detection processing for a liquid level of the liquid. The Peltier element forms a heat flow passing through the detecting element from the other surface to the one surface, toward the liquid or a gas. The control unit calculates a liquid level on the basis of an output value of an electrical signal outputted according to the heat flow passing through the detecting element, and a relationship between an output value of the detecting element and a liquid level.