Abstract:
A small reactor, which contains an inorganic transparent substrate, which contains: a reaction channel configured to allow a chemical reaction to proceed therein; a supply channel, which is connected to one end of the reaction channel, and is configured to supply samples to be reacted in the reaction channel; and a discharge channel, which is connected to the other end of the reaction channel, and is configured to discharge a reaction product from the reaction channel, wherein the inorganic transparent substrate is in the shape of an arc-shaped curve.
Abstract:
To provide an inorganic polarizing plate which, when used in structures having different used wavelength bands, can reduce reflectance by using a common structure, making it possible to achieve a predetermined light extinction ratio. The inorganic polarizing plate has a substrate that is transparent to light in a used bandwidth, a reflective layer that is composed of grids that are formed on one surface of the substrate with a pitch that is smaller than a wavelength of light in the used bandwidth, a dielectric layer that is stacked on the reflective layer, and an absorbing layer containing FeSi fine particles.
Abstract:
A heat radiation control element 11, which contains an inorganic layer 21 a surface of which has openings arranged two-dimensionally, and a reflecting film 22.
Abstract:
Provided is a retardation element, including: a transparent substrate; a retardation imparting antireflection layer; a first birefringent layer; and a second birefringent layer which has approximately the same average thickness as that of the first birefringent layer and contacts the first birefringent layer such that an angle formed between a first line segment representing the principal axis of refractive index anisotropy of the first birefringent layer and a second line segment representing the principal axis of refractive index anisotropy of the second birefringent layer is neither 0° nor 180° when the first line segment and the second line segment are projected on the transparent substrate such that an end A of the first line segment at a side of the transparent substrate and an end B of the second line segment at a side of the transparent substrate coincide with each other.
Abstract:
Provided is a wire grid polarization plate that has heat resistance and excellent polarization properties, and has durability even in a thin wire structure with a small pitch, and an optical apparatus and a manufacturing method of a polarization plate. A periodic lamellar structure is formed with a material forming arrangement by self-assembling performance, and then, is metallized, and thus, metal wires arranged at a small pitch are prepared, and the obtained wires are fixed by a dielectric material.
Abstract:
Provided are a thin film for optical element as a single-layer thin film which contains a Si simple substance, a Si compound excluding Si alloy, and a metal or metal compound, a method of manufacturing the thin film for optical element, and an optical element including the thin film for optical element. Further provided are an inorganic polarizing plate including a reflection suppressing layer composed of the thin film for optical element, a method of manufacturing the inorganic polarizing plate, and an optical device including the inorganic polarizing plate.
Abstract:
Provided are: a polarizing plate having high transmittance characteristics and suppressed reflected light, and a manufacturing method thereof; and an optical device provided with said polarizing plate. A polarizing plate (100) having a wire grid structure comprises: a transparent substrate (1); and grid-like projection portions (20) arranged on the transparent substrate at a pitch shorter than the wavelength of light in a used bandwidth and extending in a predetermined direction. The grid-like projection portions (20) each have a reflective layer (3) and a dielectric layer (4) in order from the transparent substrate (1) side, wherein when viewed from the predetermined direction, the reflective layer (3) has at least one step on the side thereof and has the largest bottom width on the transparent substrate (1) side.
Abstract:
Provided are a pattern formation method and a method for manufacturing a polarizing plate using the pattern formation method, the pattern formation method having: a step for forming, on a substrate, a linear guide pattern which is arranged at a predetermined pitch and is compatible with a portion of block chains of a block copolymer, and a neutral pattern embedded in the pattern of the guide pattern; a step for forming a layer including a block copolymer on the guide pattern and the neutral pattern; a step for heat-treating the layer including the block copolymer and forming a lamellar structure in which lamellar boundaries are arranged perpendicular to the substrate by microphase separation of the block copolymer; and a step for selectively removing a portion of the block chains of the block copolymer and thereby forming a line-and-space-shaped fine pattern having a smaller pitch than the guide pattern.
Abstract:
Provided is a structural birefringence-type inorganic wave plate having excellent heat resistance and durability, and a fine pattern. Also provided is a manufacturing method for an inorganic wave plate by which, even in the case of a fine pattern, productivity is high, and a desired phase difference is easily achieved and stably obtained. This inorganic wave plate is obtained by utilizing a selective interaction between a polymer having a repeating unit containing a carbonyl group, and a metallic oxide precursor, the inorganic wave plate having a wire grid structure provided with a transparent substrate, and grid-shaped protruding portions arranged at a pitch shorter than the wavelength of light in a used band on at least one surface of the transparent substrate and extending in a predetermined direction, the main component of the grid-shaped protruding portion being a metallic oxide.
Abstract:
Provided is a polarizing plate having an appropriate reflectance characteristic formed from an inexpensive material by an inexpensive production device. In a polarizing plate having a wire grid structure including: a transparent substrate; and a grid-like projection that is arranged on the transparent substrate at a pitch smaller than a wavelength of light in a used band and extends in a predetermined direction, an absorption layer constituting the grid-like projection contains an impurity semiconductor obtained by adding a minute amount of a specific element to an intrinsic semiconductor.