Abstract:
Provided is a hetero-junction solar cell with a silicon crystalline substrate of small thickness but exhibiting less warpage, and having a high photoelectric conversion efficiency. The crystalline silicon substrate has a thickness of 50 μm to 200 μm, and has a rough structure on the light-incident-side surface thereof. The surface of the transparent conductive layer in the light incidence side has an irregular structure. The top-bottom distance in the irregular structure of the transparent conductive layer in the light-incidence-side is preferably smaller than the top-bottom distance in the rough structure of the crystalline silicon substrate in the-light-incidence side. The distance between tops of the projections in the irregular structure on the surface of the transparent conductive layer in the light incidence side is preferably smaller than the distance between tops of the projections in the rough structure on the surface of the crystalline silicon substrate in the light incidence side.
Abstract:
A network relay device is for receiving, from an external network relay device, connection confirmation information indicative of being in communication connection with the external network relay device. When the connection confirmation information is particular connection confirmation information indicative of being transmitted from a predetermined external network relay device, the network relay device provides return confirmation information to the predetermined external network relay device.
Abstract:
A method of manufacturing display panels includes the steps of forming a material layer on a substrate (23), and baking the material layer formed on substrate (23) which is placed on a supporting bed (20). The supporting bed (20) is formed of a first supporting bed (21) and a second supporting bed (22) placed on the first one (21). A difference in thermal expansion coefficient between the second supporting bed (22) and the substrate (23) is set smaller than a difference in thermal expansion coefficient between the first supporting bed (21) and the substrate (23), and the substrate (23) is placed on the second supporting bed (22) such that the second supporting bed (22) exists around the substrate (23) during the baking step for being heated and baked. This structure allows suppressing the production of scratches on a surface of the substrate (23).
Abstract:
A distilling apparatus and method use a two step distillation and purification process for processing a waste liquid, such as an impure sulfuric acid solution, to form a highly concentrated sulfuric acid solution. First, the waste liquid is stored in a concentrating column, where it is heated. A condenser, which uses the waste liquid as a cooling medium, condenses the vapor generated by the heater. The condensed vapor is passed through a filter, which separates impurities out of the waste liquid, prior to feeding the waste liquid back into the concentrating column. Water is then removed from the waste liquid via a distilling process. The resulting concentrated liquid is then fed to a purifying column, where it is again heated, to remove residue, and condensed, resulting in a highly pure waste liquid. The liquid level and physical state of the waste liquid in both the concentrating column and the purifying column are monitored to insure that only an optimum amount of waste liquid for distillation is stored in each of the columns.
Abstract:
The present invention provides an image display device capable of displaying a good image by suppressing yellowing of a glass substrate, and an evaluating method of the glass substrate. The image display device is formed using the glass substrate where reflectance at wavelength of 220 nm is 5% or lower. In the evaluating method of the glass substrate for the image display device, Sn++ content in the glass substrate is analyzed using reflectance at wavelength of 220 nm.
Abstract:
A distilling apparatus and method use a two step distillation and purification process for processing a waste liquid, such as an impure sulfuric acid solution, to form a highly concentrated sulfuric acid solution. First, the waste liquid is stored in a concentrating column, where it is heated. A condenser, which uses the waste liquid as a cooling medium, condenses the vapor generated by the heater. The condensed vapor is passed through a filter, which separates impurities out of the waste liquid, prior to feeding the waste liquid back into the concentrating column. Water is then removed from the waste liquid via a distilling process. The resulting concentrated liquid is then fed to a purifying column, where it is again heated, to remove residue, and condensed, resulting in a highly pure waste liquid. The liquid level and physical state of the waste liquid in both the concentrating column and the purifying column are monitored to insure that only an optimum amount of waste liquid for distillation is stored in each of the columns.
Abstract:
Disclosed is a solar cell having a collecting electrode on one main surface of a photoelectric conversion section. The collecting electrode includes a first electroconductive layer and a second electroconductive layer in this order from the photoelectric conversion section side, and further includes an insulating layer between the first electroconductive layer and the second electroconductive layer. The first electroconductive layer includes a low-melting-point material, and a part of the second electroconductive layer is conductively connected with the first electroconductive layer through, for example, an opening in the insulating layer. The second electrode layer is preferably formed by a plating method. In addition, it is preferable that before forming the second electroconductive layer, annealing by heating is carried out to generate the opening section in the insulating layer.
Abstract:
Provided is a hetero-junction solar cell with a silicon crystalline substrate of small thickness but exhibiting less warpage, and having a high photoelectric conversion efficiency. The crystalline silicon substrate has a thickness of 50 μm to 200 μm, and has a rough structure on the light-incident-side surface thereof. The surface of the transparent conductive layer in the light incidence side has an irregular structure. The top-bottom distance in the irregular structure of the transparent conductive layer in the light-incidence-side is preferably smaller than the top-bottom distance in the rough structure of the crystalline silicon substrate in the-light-incidence side. The distance between tops of the projections in the irregular structure on the surface of the transparent conductive layer in the light incidence side is preferably smaller than the distance between tops of the projections in the rough structure on the surface of the crystalline silicon substrate in the light incidence side.
Abstract:
A hub includes first and second side surfaces respectively opposed to inner and outer circumferential surfaces of an upper portion of a magnetic member, and a ceiling surface arranged to interconnect an upper ends of the first and second side surfaces. The adhesive agent is interposed between the inner circumferential surface of the upper portion of the magnetic member and the first side surface of the hub and between the upper surface of the magnetic member and the ceiling surface of the hub. Radial distance between the inner circumferential surface of the upper portion of the magnetic member and the first side surface of the hub and axial distance between the upper surface of the magnetic member and the ceiling surface of the hub are smaller than radial distance between the outer circumferential surface of the upper portion of the magnetic member and the second side surface of the hub.
Abstract:
A network relay device is for receiving, from an external network relay device, connection confirmation information indicative of being in communication connection with the external network relay device. When the connection confirmation information is particular connection confirmation information indicative of being transmitted from a predetermined external network relay device, the network relay device provides return confirmation information to the predetermined external network relay device.