Abstract:
Circuit configurations for controlling an AC motor drive system wherein the control systems include redundancy features to compensate for possible failed system components.
Abstract:
An electrical machine includes a stator and a rotor disposed in a housing of the electrical machine. The stator includes windings having a first set of end turns at a first end of the stator and having a second set of end turns at a second, opposing end of the stator. The stator has a substantially tubular shape and an interior lateral surface. The rotor extends through the interior of the stator. A flow inlet into a volume in the housing about the first end turns is located radially outside of the interior lateral surface of the stator. A flow outlet from the volume in the housing about the first end turns is located radially outside of the interior lateral surface. The inlet and the outlet are cooperatively arranged to communicate a flow of fluid substantially transverse across the first end of the stator.
Abstract:
A stator core for a motor includes a plurality of laminations in a stacked formation one on another defining a generally circular inner periphery for receipt of a motor rotor. Each lamination defines an axis therethrough that is collinear with an axis of each lamination in the stacked formation. Each lamination is rotated about its axis relative to adjacent laminations a predetermined index angle. The laminations have first and second surfaces and are configured such that the core defines at least one inner lamination having laminations adjacent to both the first and second sides and outer laminations having laminations adjacent to one of the first and second sides. Each lamination has a predetermined number of circumferentially equally spaced slots extending radially inwardly from an inner edge of the lamination. The slots define conductor receiving regions therein. Each inner lamination includes at least one interlocking pair including a projection formed in one of the first and second surfaces at a predetermined radial distance from the axis. The projection extends generally transverse from a plane of the lamination. Each interlocking pair further defines a shadow formed therein that is at the same predetermined radial distance from the axis as is the projection. The shadow is spaced from the projection by an angle, .alpha., wherein each projection of a lamination is configured to reside within a shadow of a respective adjacent lamination when the laminations are in their stacked formation.
Abstract:
A dynamoelectric machine constructed for speed and accuracy of manufacturing has a stator core constructed of 90.degree. symmetrical stator laminations and the windings have differing numbers of poles which overlap in slots of the stator core are wound of the core formed by the laminations in unique fashion. The rotor bars of the machine are skewed to optimize performance of the machine when in the form of a single phase induction motor. Magnet wire leads of the windings are connected directly to terminals on a plug and terminal assembly which is formed for positive location on an end frame of the machine without welding or other fastening to the end frame. The end frames of the machine and stator laminations forming the stator core are formed so as to increase the precision of the final position of the stator relative to the rotor assembly of the dynamoelectric machine. The end frames are constructed for grounding without the use of fasteners or wire. The engagement of the end frames with the stator core is employed as the basis for alignment of the machine components.
Abstract:
A rotor or stator hub for an electric machine includes a plurality of magnets arranged in a predetermined same pattern on a plurality of uniformly sized carrier plates. A plurality of permanent magnets are uniformly mounted on each of the carrier plates proximate a first edge of the carrier plate and spaced away from a second edge of the carrier plate. The carrier plates may be mounted on a rotor or stator hub in a predetermined configuration to create a plurality of axial array groups.
Abstract:
A motor driven assembly includes a motor having a motor inlet and a motor outlet, a shaft, and a rotor spaced radially outwards from the shaft. A cooling flow passage is located between the shaft and the rotor. The cooling flow passage fluidly connects the motor inlet and the motor outlet. A compressor is in fluid communication with the motor outlet. The compressor includes a compressor outlet that is in fluid communication with the motor inlet.
Abstract:
An electric machine system includes an electric machine and a companion device. The electric machine has a stationary member and a movable member that, by interaction of magnetic fields, at least one of moves relative to the stationary member or generates electricity when moved relative to the stationary member. One of the stationary member and the movable member comprising a permanent magnet. The companion device is coupled to the electric machine to communicate mechanical movement with the movable member. In certain instances, the electric machine system has adaptations for operation of the electric machine system subsea and/or in a corrosive environment. The electric machine includes a stator that carries a conductive winding having multiple coils. A first subset of the coils are in a first configuration, and a second subset of the coils are in a second configuration. In some implementations, the first configuration is a lap winding configuration, and the second configuration is a concentric winding configuration.
Abstract:
A rotor for an electrical machine includes a rotor hub and a plurality of permanent magnet segments affixed around a perimeter of the rotor hub. A first plurality of the permanent magnet segments have a substantially uniform arcuate span and are formed of a single unitary piece of material. A multi-piece permanent magnet segment includes at least two pieces, each having a smaller arcuate span than the first plurality of segments. The magnetization direction vector of one piece different than the magnetization direction vector of at least one other piece in each multi-piece segment.
Abstract:
Circuit configurations for controlling an AC motor drive system wherein the control systems include redundancy features to compensate for possible failed system components.
Abstract:
An exemplary power system may include an electric machine with multiple sets of stator windings, each set of windings being coupled through a separate switch matrix to a common voltage bus, and each of which may be spatially arranged in full pitch around the stator such that stator flux harmonics are substantially reduced. The reduced stator flux harmonics may be associated with phase current harmonic content. In an example application, such power systems may operate in a generating mode to transfer mechanical energy to electrical energy on a DC voltage bus. In some illustrative embodiments, the power system may provide both high-power and high-speed (e.g., 1MW at 8000 rpm or above) motoring and/or generating capability suitable, for example, for on-board (e.g., marine, aviation, traction) power systems.