Abstract:
A liquid crystal display includes first and second substrates, and a liquid crystal layer disposed therebetween. First and second gate lines are disposed on the first substrate. First and second data lines, and a power line are disposed on the first substrate. A first switching element is connected to the first gate line and the first data line, a second switching element is connected to the first gate line and the power line, a third switching element is connected to the second gate line and the second data line, a first pixel electrode is connected to the first switching element, a second pixel electrode is connected to the second switching element, a third pixel electrode is connected to the second switching element, and a fourth pixel electrode is connected to the third switching element, and a gate-on voltage can be simultaneously applied to the first and second gate lines.
Abstract:
A display substrate includes a base substrate, a conductive line on the base substrate, a switching element and a testing member. The switching element includes a first electrode formed on the semiconductor layer pattern and electrically connected to the conductive line, and a second electrode spaced apart from the first electrode and semiconductor layer pattern. The testing member includes a conductive line testing portion that is formed from the same layer as the conductive line and an electrode testing portion that is formed from the same layer as the first electrode. The conductive line testing portion and the electrode testing portion have substantially the same width as the conductive line and the first electrode, respectively. The testing member also includes a semiconductor layer testing portion. The display substrate lends itself to efficient manufacturing with reduced process time and cost.
Abstract:
A thin film panel is provided, which includes a first signal line and a second signal line crossing the first signal line and formed on a different layer from the first signal line. The second signal line includes an expansion having an enlarged area and at least one cutout, and is disposed adjacent to a crossing region where the second signal line crosses the first signal line.
Abstract:
A display substrate includes a base substrate, a conductive line on the base substrate, a switching element and a testing member. The switching element includes a first electrode formed on the semiconductor layer pattern and electrically connected to the conductive line, and a second electrode spaced apart from the first electrode and semiconductor layer pattern. The testing member includes a conductive line testing portion that is formed from the same layer as the conductive line and an electrode testing portion that is formed from the same layer as the first electrode. The conductive line testing portion and the electrode testing portion have substantially the same width as the conductive line and the first electrode, respectively. The testing member also includes a semiconductor layer testing portion. The display substrate lends itself to efficient manufacturing with reduced process time and cost.
Abstract:
A method for fabricating a thin film array substrate for a liquid crystal display includes steps of forming a gate line assembly and a common electrode line assembly on a first substrate. The gate line assembly includes a plurality of gate lines and gate pads, and the common electrode line assembly includes common signal lines and common electrodes. Thereafter, a gate insulating layer is formed on the first substrate, and a semiconductor pattern and an ohmic contact pattern are formed on the gate insulating layer. A data line assembly and pixel electrodes are then formed on the first substrate. The data line assembly includes a plurality of data lines, data pads, and source and drain electrodes. The pixel electrodes are connected to the drain electrodes while proceeding parallel to the common electrodes. A passivation layer is formed on the substrate. The passivation layer and the gate insulating layer are etched such that the gate pads and the data pads are exposed to the outside. At this time, the etching is performed after an assembly process where a second substrate is arranged to face the first substrate and assembled together and the passivation layer and the gate insulating layer are exposed outside of the second substrate.
Abstract:
A thin film transistor array panel is provided, comprising: a gate line on an insulating substrate; a storage electrode line on the insulating substrate; a gate insulating layer over the gate line and the storage electrode line; a semiconductor layer on the gate insulating layer; a data line and a drain electrode on the semiconductor layer and separated from each other; a lower passivation layer formed on the semiconductor layer and having a first contact hole exposing the drain electrode; a color filter on the lower passivation layer; an upper passivation layer on the color filter and having a second contact hole exposing the drain electrode; and a pixel electrode connected to the drain electrode through the first and second contact holes; wherein the storage electrode line has a light blocking member parallel to the data line.
Abstract:
A method for fabricating a thin film array substrate for a liquid crystal display includes steps of forming a gate line assembly and a common electrode line assembly on a first substrate. The gate line assembly includes a plurality of gate lines and gate pads, and the common electrode line assembly includes common signal lines and common electrodes. Thereafter, a gate insulating layer is formed on the first substrate, and a semiconductor pattern and an ohmic contact pattern are formed on the gate insulating layer. A data line assembly and pixel electrodes are then formed on the first substrate. The data line assembly includes a plurality of data lines, data pads, and source and drain electrodes. The pixel electrodes are connected to the drain electrodes while proceeding parallel to the common electrodes. A passivation layer is formed on the substrate. The passivation layer and the gate insulating layer are etched such that the gate pads and the data pads are exposed to the outside. At this time, the etching is performed after an assembly process where a second substrate is arranged to face the first substrate and assembled together and the passivation layer and the gate insulating layer are exposed outside of the second substrate.