Abstract:
A quick-connect heart valve prosthesis that can be quickly and easily implanted is provided. The heart valve includes a substantially non-expandable, non-compressible prosthetic valve and a plastically-expandable coupling stent, thereby enabling attachment to the annulus without sutures. A small number of guide sutures may be provided for aortic valve orientation. The prosthetic valve may be a commercially available valve with a sewing ring with the coupling stent attached thereto. The coupling stent may expand from a conical deployment shape to a conical expanded shape, and may include web-like struts connected between axially-extending posts. A system and method for deployment includes a hollow two-piece handle through which a balloon catheter passes. A valve holder is stored with the heart valve and the handle easily attaches thereto to improve valve preparation steps.
Abstract:
A system for expanding a device in a conduit or orifice of a human body includes a balloon member that is movable from a first configuration to a second configuration. External surfaces of the balloon member can collectively have a non-cylindrical cross-section relative to a main axis of the balloon member, such that the external surfaces of the balloon member generally conform to the anatomical shape of the conduit or orifice when the balloon member is in the second configuration.
Abstract:
A prosthetic apparatus for implantation in a native mitral valve includes a main body for placement within the native mitral annulus. The main body is compressible to a radially compressed state for delivery into the heart and is self-expandable from the compressed state to a radially expanded state for implantation. A valve structure is mounted within a lumen of the main body and preferably forms three leaflets made of pericardium. An atrial sealing member is disposed along an atrial portion of the main body and ventricular anchors are coupled to a ventricular portion of the main body. The atrial sealing member impedes the flow of blood between the main body and the native annulus. The ventricular anchors are positioned outside the main body for capturing native mitral valve leaflets between the main body and the ventricular anchors.
Abstract:
Embodiments of an apparatus for treating a deficient mitral valve include an expandable spacer configured for placement between the native leaflets of the mitral valve, the spacer anchorable to a wall of the ventricle. Methods and apparatus for delivering and implanting the prosthetic are also described.
Abstract:
A quick-connect heart valve prosthesis that can be quickly and easily implanted is provided. The heart valve includes a substantially non-expandable, non-compressible prosthetic valve and a plastically-expandable coupling stent, thereby enabling attachment to the annulus without sutures. A small number of guide sutures may be provided for aortic valve orientation. The prosthetic valve may be a commercially available valve with a sewing ring with the coupling stent attached thereto. The coupling stent may expand from a conical deployment shape to a conical expanded shape, and may include web-like struts connected between axially-extending posts. A system and method for deployment includes a hollow two-piece handle through which a balloon catheter passes. A valve holder is stored with the heart valve and the handle easily attaches thereto to improve valve preparation steps.
Abstract:
This disclosure pertains generally to prosthetic devices and related methods for helping to seal native heart valves and prevent or reduce regurgitation therethrough, as well as devices and related methods for implanting such prosthetic devices. In some cases, a spacer having a single anchor can be implanted within a native heart valve. In some cases, a spacer having dual anchors can be implanted within a native heart valve. In some cases, devices can be used to extend the effective length of a native heart valve leaflet.
Abstract:
Embodiments of a method for implanting a prosthetic valve at the native mitral valve region of the heart, the prosthetic valve including a main body that is radially compressible to a radially compressed state and self-expandable from the compressed state to a radially expanded state. The prosthetic apparatus also comprises at least one ventricular anchor coupled to the main body and disposed outside of the main body with a leaflet-receiving space between the anchor and an outer surface of the main body to receive a native valve leaflet. Apparatus for delivering and implanting the prosthetic valve are also described.
Abstract:
A method of implanting a prosthetic heart valve assembly includes advancing a delivery catheter through a vein and toward a native heart valve. The prosthetic heart valve assembly is deployed from a lumen of the delivery catheter, allowing the prosthetic heart valve assembly to self-expand from a compressed state to a functional size within an annulus of the native heart valve with a flared upper portion of the stent located in an atrium against a supra-annular surface of the annulus of the native heart valve. An elongate anchoring member is attached to a septum of a ventricle at a location below the annulus. The flared upper portion contacts a supra-annular surface of the native heart valve for preventing downward migration of the prosthetic heart valve assembly toward the ventricle and the elongate anchoring member prevents upward migration of the prosthetic heart valve assembly toward the atrium.
Abstract:
A prosthetic heart valve assembly includes a self-expandable stent having a flared upper portion, a lower portion, and an intermediate portion extending from the upper portion to the lower portion. The stent includes upwardly bent hooks extending from an outer surface of the stent, which are adapted to engage native leaflet tissue. The stent further includes an elongate anchoring member extending from the lower portion of the stent, which is adapted to be secured to a ventricle wall via a prong portion. When deployed within the native heart valve, the flared upper portion contacts a supra-annular surface of the native heart valve for preventing downward migration of the prosthetic heart valve assembly toward the ventricle and the upwardly bent hooks and the elongate anchoring member prevent upward migration of the prosthetic heart valve assembly toward an atrium.
Abstract:
A prosthetic heart valve assembly includes a self-expandable stent having a flared upper portion, a lower portion, and an intermediate portion extending from the upper portion to the lower portion. The stent includes upwardly bent hooks extending from an outer surface of the stent, which are adapted to engage native leaflet tissue. The stent further includes an elongate anchoring member extending from the lower portion of the stent, which is adapted to be secured to a ventricle wall via a prong portion. When deployed within the native heart valve, the flared upper portion contacts a supra-annular surface of the native heart valve for preventing downward migration of the prosthetic heart valve assembly toward the ventricle and the upwardly bent hooks and the elongate anchoring member prevent upward migration of the prosthetic heart valve assembly toward an atrium.