Abstract:
A multi-state low-current-switching magnetic memory element (magnetic memory element) comprising a free layer, two stacks, and a magnetic tunneling junction is disclosed. The stacks and magnetic tunneling junction are disposed upon surfaces of the free layer, with the magnetic tunneling junction located between the stacks. The stacks pin magnetic domains within the free layer, creating a free layer domain wall. A current passed from stack to stack pushes the domain wall, repositioning the domain wall within the free layer. The position of the domain wall relative to the magnetic tunnel junction corresponds to a unique resistance value, and passing current from a stack to the magnetic tunnel junction reads the magnetic memory element's resistance. Thus, unique memory states may be achieved by moving the domain wall.
Abstract:
A multi-state current-switching magnetic memory element includes a stack of magnetic tunneling junction (MTJ) separated by a non-magnetic layer for storing more than one bit of information, wherein different levels of current applied to the memory element cause switching to different states.
Abstract:
A multi-state current-switching magnetic memory element has a magnetic tunneling junction (MTJ), for storing more than one bit of information. The MTJ includes a fixed layer, a barrier layer, and a non-uniform free layer. In one embodiment, having 2 bits per cell, when one of four different levels of current is applied to the memory element, the applied current causes the non-uniform free layer of the MTJ to switch to one of four different magnetic states. The broad switching current distribution of the MTJ is a result of the broad grain size distribution of the non-uniform free layer.
Abstract:
A multi-state current-switching magnetic memory element includes a stack of magnetic tunneling junction (MTJ) separated by a non-magnetic layer for storing more than one bit of information, wherein different levels of current applied to the memory element cause switching to different states.
Abstract:
A multi-state current-switching magnetic memory element has a magnetic tunneling junction (MTJ), for storing more than one bit of information. The MTJ includes a fixed layer, a barrier layer, and a non-uniform free layer. In one embodiment, having 2 bits per cell, when one of four different levels of current is applied to the memory element, the applied current causes the non-uniform free layer of the MTJ to switch to one of four different magnetic states. The broad switching current distribution of the MTJ is a result of the broad grain size distribution of the non-uniform free layer.
Abstract:
One embodiment of the present invention includes a diode-addressable current-induced magnetization switching (CIMS) memory element including a magnetic tunnel junction (MTJ) and a diode formed on top of the MTJ for addressing the MTJ.
Abstract:
An embodiment of the present invention is disclosed to include a nonvolatile memory system for controlling erase operations performed on a nonvolatile memory array comprised of rows and columns, the nonvolatile memory array stores digital information organized into blocks with each block having one or more sectors of information and each sector having a user data field and an extension field and each sector stored within a row of the memory array. A controller circuit is coupled to a host circuit and is operative to perform erase operations on the nonvolatile memory array, the controller circuit erases an identified sector of information having a particular user data field and a particular extension field wherein the particular user field and the particular extension field are caused to be erased separately.
Abstract:
A flash EPROM cell has a reduced cell size by providing vertical coupling between the floating gate and the bit line during programming. The erase operation is done by tunneling of electrons from the sharp tip of the Poly spacer to the control gate. The cell is adapted so that the source for each cell within the array is the source of an adjacent cell and the drain is the drain to another adjacent cell. The cell is formed by forming the drain regions into the substrate through openings in a first insulator that is preferably the field oxide. A second insulator is deposited over the first insulator, over the substrate and along the side walls of the openings and is preferably a thin layer so that the opening is covered with a thin insulating layer. The insulated opening is filled with a first doped polysilicon layer. The field oxide is selectively removed. A gate oxide is grown and a second polysilicon layer is formed and then etched to form spacers along the edges of the first polysilicon/second insulator structure. The second polysilicon is selectively etched and a tunneling insulator layer is formed thereover. A third polysilicon layer is formed over the tunneling insulator.
Abstract:
A non-volatile magnetic memory element includes a number of layers one of which is a free layer which is graded. The graded free layer may include various elements with each element having a different anisotropy or it may include nonmagnetic compounds and magnetic regions with the non-magnetic compounds forming graded contents forming a unique shape such as cone shaped, diamond shaped or other shapes and whose thickness is based on the reactivity of the magnetic compound.
Abstract:
A non-volatile magnetic memory element includes a number of layers one of which is a free layer which is graded. The graded free layer may include various elements with each element having a different anisotropy or it may include nonmagnetic compounds and magnetic regions with the non-magnetic compounds forming graded contents forming a unique shape such as cone shaped, diamond shaped or other shapes and whose thickness is based on the reactivity of the magnetic compound.