Abstract:
A method of fabricating a thyristor-based memory may include forming different opposite conductivity-type regions in silicon for defining a thyristor and an access device in series relationship. An activation anneal may activate dopants previously implanted for the different regions. A damaging implant of germanium or xenon or argon may be directed into select regions of the silicon including at least one p-n junction region for the access device and the thyristor. A re-crystallization anneal may then be performed to re-crystallize at least some of the damaged lattice structure resulting from the damaging implant. The re-crystallization anneal may use a temperature less than that of the previous activation anneal.
Abstract:
In some embodiments, a computer-aided design system comprises a functional regularity extraction component, a structural regularity extraction component and a floorplanning component. The functional regularity extraction component provides a method to extract regularity for circuits (and in particular datapath circuits) based on the functional characteristics of a logic design. Some embodiments of the functional regularity extraction component automatically generate a set of templates to cover a circuit. A template is a representation of a subcircuit with at least two instances in the circuit. The templates generated by the functional regularity extraction component are used by a structural regularity extraction component. The structural regularity extraction component provides a method to extract regularity for circuits (and in particular datapath circuits) based on the structural characteristics of a logic design. Some embodiments of the structural regularity extraction component automatically generate a set of vectors for the logic design. A vector is a group of template instances that are identical in function and in structure. The vectors generated by the structural regularity extraction component are used by a floorplanning component. The floorplanning component provides a method of generating a circuit layout from the set of vectors. In some embodiments, each vectors corresponds to a row in the circuit layout.
Abstract:
A high power unipolar FET switch has an N− drift layer; a layer of metal contacts the drift layer via an ohmic contact to provide a drain connection for the FET. Each switch cell has a pair of trenches recessed into the drift layer and separated by a mesa region. Oxide layers line the walls and bottom of each trench, which are each filled with a conductive material; the conductive material in each trench is connected together to provide a gate connection for the FET. A shallow P region extends from the bottom of each trench into the drift layer and around the trench corners. A layer of metal contacts the mesa region via an ohmic contact to provide a source connection for the FET. The structure preferably operates as a “normally-off” device, with the potentials created by the work function difference between the conductive material and the N− mesa region completely depleting the mesa region. A positive gate voltage undepletes the mesa regions, creates accumulation channels adjacent to the oxide side-walls of the trenches, and modulates the mesa region, thereby turning the switch on and allowing current to flow between drain and source via the mesa region and the accumulation channels. The switch's unipolar structure enables the device to exhibit a fast switching speed with very low switching losses.
Abstract:
An Hardware Description Language (HDL) description file (12) is updated without requiring complete re-assignment of all tokens associated with the HDL statements. The design information is maintained as attributes assigned to the tokens (14). The tokens map onto a block diagram (16). As part of an update to the HDL text file (34), the tokens are compared to see which ones if any have changed. The text lines are compared from left-to-right and right-to-left searching for changes in the text file and associated changes in token mapping (36, 38). All tokens inclusive between the left-most change and right-most change is considered to be different. New tokens are assigned and mapped into the block diagram for the HDL elements that change (40). The mapping of old tokens are removed from the block diagram (42). The mappings from token that did not change are maintained (44).
Abstract:
Generating delay targets for creating a multilevel hierarchical circuit design by providing a hierarchical design description and delay constraints of the circuit design; generating a net measure for each net and macro cell of the circuit design, and generating an abstract delay model for each macro cell of the circuit design based on the design description, wherein net measure is the estimated resistive-capacitive delay of a net derived from the estimated length of the net based on area-driven design, and an abstract delay model is a description of delays through a macro cell; generating delay targets for the nets and macro cells based on the net measures, the abstract delay models and the delay constraints; and creating the circuit design based on the delay targets.
Abstract:
A service appliance is installed between production servers running service applications and service users. The production servers and their service applications provide services to the service users. In the event that a production server is unable to provide its service to users, the service appliance can transparently intervene to maintain service availability. To maintain transparency to service users and service applications, service users are located on a first network and production servers are located on a second network. The service appliance assumes the addresses of the service users on the second network and the addresses of the production servers on the first network. Thus, the service appliance obtains all network traffic sent between the production server and service users. While the service application is operating correctly, the service appliance forwards network traffic between the two networks using various network layers.
Abstract:
A service appliance is installed between production servers running service applications and service users. The production servers and their service applications provide services to the service users. In the event that a production server is unable to provide its service to users, the service appliance can transparently intervene to maintain service availability. To maintain transparency to service users and service applications, service users are located on a first network and production servers are located on a second network. The service appliance assumes the addresses of the service users on the second network and the addresses of the production servers on the first network. Thus, the service appliance obtains all network traffic sent between the production server and service users. While the service application is operating correctly, the service appliance forwards network traffic between the two networks using various network layers.
Abstract:
A service appliance is installed between production servers running service applications and service users. The production servers and their service applications provide services to the service users. In the event that a production server is unable to provide its service to users, the service appliance can transparently intervene to maintain service availability. To maintain transparency to service users and service applications, service users are located on a first network and production servers are located on a second network. The service appliance assumes the addresses of the service users on the second network and the addresses of the production servers on the first network. Thus, the service appliance obtains all network traffic sent between the production server and service users. While the service application is operating correctly, the service appliance forwards network traffic between the two networks using various network layers.
Abstract:
A sensory evaluation device, and methods of using the same, for the evaluation of the efficacy of odor-absorbing compositions, particularly animal litters. The sensory evaluation device includes a first chamber containing one odor-absorbing composition suitable for use as an animal litter coupled to a second chamber containing a second odor-absorbing composition suitable for use as an animal litter. Each odor-absorbing composition is dosed with an odor-emitting substance, preferably colored such that the dosing is visible. Each chamber contains a vapor-permeable barrier, which is capable of communication with the ambient environment. The vapor-permeable barriers are protected from the ambient environment by vapor-permeable barrier protectors, which are removably coupled to the vapor-permeable barriers. More than one sensory evaluation device may be comparatively used by a single user at one time.
Abstract:
An isolated DNA sequence set forth in SEQ ID NO: 32, which is differentially expressed in apical buds of plant Caragana jubata (Pall.) under freezing conditions, is disclosed.
Abstract translation:公开了在冷冻条件下在植物Caragana jubata(Pall。)的顶芽中差异表达的SEQ ID NO:32所示的分离的DNA序列。