摘要:
A method for treating carbon nanotubes with microwave energy to selective remove metallic-type carbon nanotubes is provided. A sample containing carbon nanotubes is positioned in a microwave cavity at a location corresponding to a maximum in the electric field component of a stationary wave having a microwave frequency. The sample is exposed to the microwave energy for a sufficient period of time to increase the proportion of semiconducting-type carbon nanotubes within the sample. Alternatively, a sample consisting essentially of metallic-type and semiconducting-type carbon nanotubes is exposed to microwave energy for a sufficient period of time to increase the proportion of semiconducting-type carbon nanotubes within the sample.
摘要:
Methods for synthesizing metal nanowires are provided. A metalorganic layer is deposited on a substrate as a thin film. The thermal decomposition of the metalorganic thin film in the presence of air synthesizes metal nanowires. The metal can be varied to produce nanowires with different properties.
摘要:
Electrochromic (EC) glass having carbon single-walled nanotubes as the electrodes (SWNTs) is disclosed. Methods and processes for preparing EC glass having SWNTs are also disclosed. The SWNTs, synthesized by any one of the art methods, are deposited on the glass to provide a transparent and electrically conductive substrate for use in EC glass.
摘要:
Methods, processes, and apparatuses for the large scale synthesis of carbon nanostructures are provided. Metal catalysts having small diameter and narrow distribution of particle sizes are prepared and continuously injected as aerosols into a reactor. The metal catalysts are supported on supports that are substantially free of carbon, and the reactor is configured to control the flow of the gases such that the reaction time and contact of the reactants with the reactor walls can be controlled. Single-walled carbon nanotubes can be synthesized at a large scale and with high yields.
摘要:
Carbon fiber/tubes are prepared by pyrolyzing a catalyst system that contains one or more diluents to facilitate control of the diameter of the formed carbon fiber/tube.
摘要:
A method for synthesizing carbon nanostructures is provided. A metalorganic layer is deposited on a substrate that has a deposition mask. The mask is removed, which also removes the portion of the metalorganic precursor deposited on the mask. The remaining portions of the metal organic layer are oxidized to produce a metal growth catalyst on the substrate that can be used for synthesis of carbon nanostructures.
摘要:
Methods, processes, and apparatuses for the continuous synthesis of carbon nanostructures are provided. Metal catalysts having small diameter and narrow distribution of particle sizes are prepared and continuously injected as aerosols into a reactor. The metal catalysts are supported on supports that are substantially free of carbon. The metal catalyst, in the form of a powder, is placed on a fluidized bed and aerosolized using an inert gas. The powder entrailed in the gas is injected near the top of a vertical reactor for the synthesis of SWNTs.
摘要:
The present teachings are directed to methods of preparing cylindrical carbon structures, specifically single-walled carbon nanotubes, with a desired chirality. The methods include the steps of providing a catalyst component on a substrate and a carbon component, contacting the catalyst component and the carbon component to produce a cylindrical carbon structure. Then, no longer providing the carbon component and determining the chirality of the cylindrical carbon structure. The catalyst component is then cleaned and the process is repeated until the cylindrical carbon structure fulfills a desired characteristic, such as, length. The chirality of the single-walled carbon nanotube grown, after cleaning of the catalyst component, has the same chirality as the initially produced nanotube.
摘要:
Carbon nanotubes are formed by chemical vapor deposition using metal nanoparticles as a growth substrate. Control over the size and properties of the carbon nanotubes is achieved by controlling the size of the metal nanoparticles in the growth substrate. The metal nanoparticles of a controlled size may be formed by a thermal decomposition reaction of a metal salt in a passivating solvent.
摘要:
Methods, processes, and apparatuses for the large scale synthesis of carbon nanostructures are provided. Metal catalysts having small diameter and narrow distribution of particle sizes are prepared and continuously injected as aerosols into a reactor. The metal catalysts are supported on supports that are substantially free of carbon. The metal catalyst, in the form of a powder, is placed in an injector that is shaken vertically. The powder is aerosolized, and the powder entrailed in the gas is passed through a conduit that is bifurcated where one portion delivers the powder to the reactor while the other portion connects back to the ejector that is located in between the gas source and the top part of the container.