Abstract:
A device and method for scanning and measuring an environment is provided. The method includes providing a three-dimensional (3D) measurement device having a controller. Images of the environment are recorded and a 3D scan of the environment is produced with a three-dimensional point cloud. A first movement of the 3D measurement device is determined and then an operating parameter of the 3D measurement device is changed based at least in part on the first movement.
Abstract:
A method for scanning and obtaining three-dimensional (3D) coordinates is provided. The method includes providing a 3D measuring device having a projector, a first camera and a second camera. The method records images of a light pattern emitted by the projector onto an object. A deviation in a measured parameter from an expected parameter is determined. The calibration of the 3D measuring device may be changed when the deviation is outside of a predetermined threshold.
Abstract:
A device and method for scanning and measuring an environment is provided. The method includes providing a three-dimensional (3D) measurement device having a controller. Images of the environment are recorded and a 3D scan of the environment is produced with a three-dimensional point cloud. A first movement of the 3D measurement device is determined and then an operating parameter of the 3D measurement device is changed based at least in part on the first movement.
Abstract:
A method for scanning and obtaining three-dimensional (3D)l coordinates is provided. The method includes providing a 3D measuring device having a projector, a first camera and a second camera. The method records images of a light pattern emitted by the projector onto an object. A deviation in a measured parameter from an expected parameter is determined. The calibration of the 3D measuring device may be changed when the deviation is outside of a predetermined threshold.
Abstract:
A method for scanning and measuring an environment is provided. The method includes providing a three-dimensional (3D) measurement device having a controller. Images of the environment are recorded and a 3D scan of the environment is produced with a three-dimensional point cloud. A video image of the environment is recorded. The video image is displayed on a first portion of a display. A portion of the three-dimensional point cloud is displayed on a second portion of the display, the second portion of the display being arranged about the periphery of the first portion of the display. Wherein a portion of the 3D point cloud displayed in the second portion represents a portion of the environment outside of a field of view of the video image.
Abstract:
A three-dimension scanning apparatus and method of use is disclosed. The system includes a light intensity meter for measuring a level of light intensity at a first camera of the 3D scanning apparatus. The first camera has an adjustable aperture. A processor is provided that is configured to adjust the adjustable aperture of the first camera automatically based on the measured light level.
Abstract:
A three-dimensional (3D) measurement system, a method of measuring 3D coordinates, and a method of generating dense 3D data is provided. The method of measuring 3D coordinates includes using a first 3D measurement device and a second 3D measurement device in a cooperative manner is provided. The method includes acquiring a first set of 3D coordinates with the first 3D measurement device. The first set of 3D coordinates are transferred to the second 3D measurement device. A second set of 3D coordinates is acquired with the second 3D measurement device. The second set of 3D coordinates are registered to the first set of 3D coordinates in real-time while the second 3D measurement device is acquiring the second set of 3D coordinates.
Abstract:
A three-dimensional (3D) measuring device and a method are provided. The measuring device includes a processor system including a scanner controller. A housing is provided with a 3D scanner that is coupled to the processor system. The scanner determining a first distance to a first object point and cooperating with the processor system to determine 3D coordinates of the first object point. The measuring device further includes a photogrammetry camera coupled to the housing, the photogrammetry camera having a lens and an image sensor that define a field of view. The photogrammetry camera is arranged to position the field of view at least partially in a shadow area, the shadow area being outside of the scan area.
Abstract:
A scanner capable of determining 3D coordinates in the presence of bright background light includes a laser and a camera, the laser emitting light at a wavelength adjusted with a thermoelectric cooler, the camera passing the adjusted wavelength through a bandpass filter.
Abstract:
A triangulation scanner system and method of operation is provided. The system includes a projector that alternately projects a pattern of light and no light during first and second time intervals. A camera includes a lens and a circuit with a photosensitive array. The camera captures an image of an object. The photosensitive array has a plurality of pixels including a first pixel. The first pixel including an optical detector and a first and second accumulator. The optical detector produces signals in response to a light levels reflected from a point on the object. The first accumulator sums the signals during the first time intervals to obtain a first summed signal. The second accumulator sums the signals during the second time intervals obtain a second summed signal. A processor determines 3D coordinates of the point based on the projected pattern of light and on the first and second summed signals.