Abstract:
A method for measuring and registering 3D coordinates has a 3D scanner measure a first collection of 3D coordinates of points from a first registration position. A 2D scanner collects horizontal 2D scan sets as 3D measuring device moves from first to second registration positions. A processor determines first and second translation values and a first rotation value based on collected 2D scan sets. 3D scanner measures a second collection of 3D coordinates of points from second registration position. Processor adjusts second collection of points relative to first collection of points based at least in part on first and second translation values and first rotation value. Processor identifies a correspondence among registration targets in first and second collection of 3D coordinates, and uses this correspondence to further adjust the relative position and orientation of first and second collection of 3D coordinates.
Abstract:
A system includes a transporter robot with a motion controller that changes the transporter robot's poses during transportation. A scanning device is fixed to the transporter robot. One or more processors are coupled to the transporter robot and the scanning device to generate a map of the surrounding environment. At a timepoint T1, when the transporter robot is stationary at a first location, a first pose of the transporter robot is captured. During transporting the scanning device, at a timepoint T2, the scanning device captures additional scan-data of a portion of the surrounding environment. In response, the motion controller provides a second pose of the transporter robot at T2. A compensation vector and a rotation for the scan-data are determined based on a difference between the first pose and the second pose. A revised scan-data is computed, and the revised scan-data is registered to generate the map.
Abstract:
Examples described herein provide a method that includes communicatively connecting a camera to a processing system. The processing system includes a light detecting and ranging (LIDAR) sensor. The method further includes capturing, by the processing system, three-dimensional (3D) coordinate data of an environment using the LIDAR sensor while the processing system moves through the environment. The method further includes capturing, by the camera, a panoramic image of the environment. The method further includes associating the panoramic image of the environment with the 3D coordinate data of the environment to generate a dataset for the environment. The method further includes generating a digital twin representation of the environment using the dataset for the environment.
Abstract:
A system and method of generating a two-dimensional (2D) image of an environment is provided. The system includes a scanner having a first light source, an image sensor, a second light source and a controller, the second light source emitting a visible light, the controller determining a distance to points based on a beam of light emitted by the first light source and receiving of the reflected beam of light from the points. Processors are operably coupled to the scanner execute a method comprising: generating a map of the environment; emitting light from the second light source towards an edge defined by at least a pair of surfaces; detecting the edge based on emitting a second beam of light and receiving the reflected second beam of light; and defining a room on the map based on the detecting of the corner or the edge.
Abstract:
Generating a three-dimensional (3D) map of an environment includes receiving, via a 3D-scanner that is mounted on a moveable platform, a 3D-scan of the environment while the moveable platform moves through the environment. The method further includes receiving via a two-dimensional (2D) scanner that is mounted on the moveable platform, a portion of a 2D-map of the environment, and receiving first coordinates of the scan position in the 2D-map. The method further includes associating the scan position with the portion of the 2D-map as a virtual landmark. In response to the movable platform being brought back at the virtual landmark, a displacement vector for the 2D-map is determined based on a difference between the first coordinates and a second coordinates that are determined for the scan position. A revised scan position is calculated based on the displacement vector, and the revised scan position is used to register the 3D-scan.
Abstract:
A system and method of automatic re-localization of a handheld scanning device in a previously mapped environment is provided. The system includes a two-dimensional (2D) scanner and one or more processors operably coupled to the 2D scanner. The one or more processors are responsive to non-transitory executable instructions for performing operations that include determining a current location of the 2D scanner in the environment relative to a location in a previously generated 2D image of the environment that was generated based on an image of a non-digital floorplan. The operations also include generating a new 2D image of at least a subset of the environment. The at least a subset of the environment includes the current location of the 2D scanner and at least one other location in the environment. The operations further include overlapping portions of the previously generated 2D image and the new 2D image.
Abstract:
A system and method for scanning an environment and generating an annotated 2D map is provided. The system includes a 2D scanner having a light source, an image sensor and a first controller. The first controller determines a distance value to at least one of the object points. The system further includes a 360° camera having a movable platform, and a second controller that merges the images acquired by the cameras to generate an image having a 360° view in a horizontal plane. The system also includes processors coupled to the 2D scanner and the 360° camera. The processors are responsive to generate a 2D map of the environment based at least in part on a signal from an operator and the distance value. The processors being further responsive for acquiring a 360° image and integrating it at a location on the 2D map.
Abstract:
A system and method of scanning an environment and acquiring an image is provided. The system includes a mobile device having a camera and a first position indicator. A scanner having a light emitter and a light receiver is provided. The scanner determining coordinates of surfaces in an environment in response to emitting light with the light emitter and receiving light with the light receiver, the scanner having a second position indicator. One or more processors are provided that determine the position of the mobile computing device and transmits the data between the scanner in response to the first position indicator engaging the second position indicator.
Abstract:
A method for measuring and registering 3D coordinates has a 3D scanner measure a first collection of 3D coordinates of points from a first registration position. A 2D scanner collects horizontal 2D scan sets as 3D measuring device moves from first to second registration positions. A processor determines first and second translation values and a first rotation value based on collected 2D scan sets. 3D scanner measures a second collection of 3D coordinates of points from second registration position. Processor adjusts second collection of points relative to first collection of points based at least in part on first and second translation values and first rotation value. Processor identifies a correspondence among registration targets in first and second collection of 3D coordinates, and uses this correspondence to further adjust the relative position and orientation of first and second collection of 3D coordinates.
Abstract:
A method for performing a simultaneous location and mapping of a scanner device includes detecting a set of lines in a point cloud, and identifying a semantic feature based on the set of lines. The method further includes assigning a first scan position of the scanner device in the surrounding environment at the present time t1 as a landmark, and linking the landmark with the portion of the map. The method further includes determining that the scanner device has moved, at time t2, to the scan position that was marked as the landmark based on identifying said semantic feature in another scan-data. In response, a second scan position at time t2 is determined. Also, a displacement vector is determined for the map based on a difference between the first scan position and the second scan position. Subsequently, a revised second scan position is computed based on the displacement vector.