Abstract:
A method and system for scanning and measuring an environment is provided. The method includes providing a three-dimensional (3D) measurement device. The 3D measurement device being operable in a helical mode or a compound mode, wherein a plurality of light beams are emitted along a first path defined by a first axis and a second axis in the compound mode and along a second path defined by the first axis in the helical mode. A mobile platform holding the 3D measurement device is moved from a first position. A first group of 3D coordinates of the area is acquired by the 3D measurement device when the mobile platform is moving. A second group of 3D coordinates of the area is acquired with a second 3D measurement device that with six-degrees of freedom (6DOF). The first group of 3D coordinates is registered based on the third group of 3D coordinates.
Abstract:
A 3D measuring device is provided. The device includes a measuring head with a light transmitter and a light receiver. A control and evaluation device is coupled to the light transmitter and light receiver and determines the distance to the object. An accessory interface allows an accessory device to be mechanically connected to the measuring head and can be electrically connected to the control and evaluation device. The accessory interface includes a receiving section and a contact section. The receiving and contact sections are arranged such that the accessory device can be inserted into the accessory interface in an insertion direction in order to electrically and mechanically couple the accessory device to the accessory interface. A support structure having an integral slot is coupled to the measuring head. The slot has the receiving section for the mechanical connection and the at least one contact section.
Abstract:
A method interactively displays panoramic images of a scene. The method includes measuring 3D coordinates with a 3D measuring instrument at a first position and a second position. The 3D coordinates are registering into a common frame of reference. Within the scene, a trajectory includes a plurality of trajectory points. Along the trajectory, 2D images are generated from the commonly registered 3D coordinates. A trajectory display mode sequentially displays a collection of 2D images at the trajectory points. A rotational display mode allows a user to select a desired view direction at a given trajectory point. The user selects the trajectory display mode or the rotational display mode and sees the result shown on the display device.
Abstract:
A method for measuring and registering three-dimensional (3D) coordinates by measuring 3D coordinates with a 3D scanner in a first position, measuring two-dimensional (2D) coordinates with a 2D scanner while moving from the first position to a second position, measuring 3D coordinates with the 3D scanner at the second position, and determining a correspondence among targets in the first and second positions while moving between the second position and a third registration position.
Abstract:
A method for measuring and registering 3D coordinates has a 3D scanner measure a first collection of 3D coordinates of points from a first registration position. A 2D scanner collects horizontal 2D scan sets as 3D measuring device moves from first to second registration positions. A processor determines first and second translation values and a first rotation value based on collected 2D scan sets. 3D scanner measures a second collection of 3D coordinates of points from second registration position. Processor adjusts second collection of points relative to first collection of points based at least in part on first and second translation values and first rotation value. Processor identifies a correspondence among registration targets in first and second collection of 3D coordinates, and uses this correspondence to further adjust the relative position and orientation of first and second collection of 3D coordinates.
Abstract:
A 3D measuring device is provided. The device includes a measuring head with a light transmitter and a light receiver. A control and evaluation device is coupled to the light transmitter and light receiver and determines the distance to the object. An accessory interface allows an accessory device to be mechanically connected to the measuring head and can be electrically connected to the control and evaluation device. The accessory interface includes a receiving section and a contact section. The receiving and contact sections are arranged such that the accessory device can be inserted into the accessory interface in an insertion direction in order to electrically and mechanically couple the accessory device to the accessory interface. A support structure having an integral slot is coupled to the measuring head. The slot has the receiving section for the mechanical connection and the at least one contact section.
Abstract:
A method and system for acquiring three-dimensional (3D) coordinates of a surface is provided. The method includes providing the scanner configured to emit a light from the light source and reflect the light onto the surface, the scanner further being configured to determine with a processor a three-dimensional coordinate of a point on the surface based at least in part on a first and second angle measuring device and a reflection of the light from the surface. An image is acquired of the surface with a camera and a feature is identified. A first area is identified having a high information content and a first arc segment is determined. The surface is scanned by rotating a motor at a first speed during the first arc segment and at a second speed during a second arc segment, the second speed being greater than the first speed.
Abstract:
In a device for optically scanning and measuring an environment, where the device is a laser scanner having a light emitter which, by a rotary mirror, emits an emission light beam, with a light receiver which receives a reception light beam, which, after passing the rotary mirror and a receiver lens which has an optical axis, is reflected from an object in the environment of the laser scanner. The laser scanner also includes a color camera which takes colored pictures of the environment of the laser scanner, and a control and evaluation unit which, for a multitude of measuring points, determines the distance to the object and links it with the colored pictures, the color camera being arranged on the optical axis of the receiver lens.
Abstract:
A method is given for finding a reference correction value of an index mark of an angular encoder. The angular encoder includes a first read head, a second read head, and a patterned element having incremental marks and an index mark. In a first instance and in a second instance, the patterned element is rotated relative to the read heads to obtain incremental readings from the first read head and the second read head and an index mark from the first read head. Based on these readings, a processor determines, in the first instance, a first reference position and, in the second instance, a second reference position. The processor determines the reference correction value based at least in part on the first reference position and the second reference position.
Abstract:
A method for optically scanning and measuring a scene by a three-dimensional (3D) measurement device in which multiple scans are generated to then be registered in a joint coordinate system of the scene. At first at least one cluster is generated from at least one scan, further scans are registered for test purposes in the coordinate system of the cluster, if specified quality criteria are fulfilled and the generated clusters are then joined, for which purpose clusters are selected, registered for test purposes and registering is confirmed if appropriate, wherein the clusters to be joined are visualized with an optional possibility for the user to intervene, for supporting the selection of clusters.