摘要:
An organic electroluminescence device (100, 200) comprises a substrate (110), an anode (130), a light emitting layer (160) and a cathode (190) stacked sequentially. The anode (130) comprises a light transmittance increased layer (131), a conductive layer (132) and a hole injection auxiliary layer (133) stacked on the substrate (110) sequentially. The materials of the light transmittance increased layer (131) are inorganic compounds of zinc with a light transmittance of 400 nm to 800 nm in the visible region and a refractive index greater than 2.3. The material of the conductive layer (132) is graphene. The utilization of light transmittance increased principle for multilayer anode structure can make the light transmittance of the anode in the visible region high and surface resistance low. The utilization of inorganic material with hole injection ability can reduce the hole injection barrier, make the luminous performance of the organic electroluminescence device (100, 200) stable and luminous efficiency high. A method for manufacturing the organic electroluminescence device (100, 200) is also provided. The anode is prepared by vacuum evaporation and pulling method, which is convenient to operate and is suitable for large scale production.
摘要:
A top-emitting organic electroluminescent device and a manufacturing method thereof are provided. The device comprises a substrate (101), an anode layer (102), a hole-injecting layer (103), a hole-transporting layer (104), a light-emitting layer (105), an electron-transporting layer (106), an electron-injecting layer (107), and a cathode layer (108), which are stacked in order. The cathode layer (108) comprises an aluminum layer (1081) and a composite thin film (1082), which consists of Ag and SiO. The aluminum layer (1081) is deposited on the electron-injecting layer (107), and the composite thin film (1082) is deposited on the aluminum layer (1081). The cathode layer (108) has a composite-layer structure consisting of the Ag and the SiO, so the light transmittance of the device is enhanced, and the emission efficiency of the device can be improved.
摘要:
A substrate, manufacturing method thereof, and an organic electroluminescent device using the same are provided, belonging to photoelectron field. The substrate includes a paper layer (102), a first protection layer (101) formed on the lower surface of the paper layer, and a second protection layer (103) formed on the upper surface and covering the same of the paper layer. The substrate, solves problems of paper which is easy to absorb humidity and has high permeability of oxygen by a protection processing that said paper is coated with the heat seal film of polyethylene terephthalate coated with Polyvinyl Dichloride. At the meantime, the substrate has the advantages of cheap material, extensive sources, simple manufacturing process, good flexibility of the substrate, and good capability of preventing the permeability of water as well.
摘要:
Var optimization (VARO) is a subsystem of a voltage and var optimization (VVO) system that processes a capacitor switching optimization problem. The VARO is a self contained process that may work stand alone or in conjunction with a Voltage Regulation Optimization (VRO) system to provide integrated VVO solutions. The VARO system takes network inputs and calculates optimal settings for distribution network capacitor banks.
摘要:
Var optimization (VARO) is a subsystem of a voltage and var optimization (VVO) system that processes a capacitor switching optimization problem. The VARO is a self contained process that may work stand alone or in conjunction with a Voltage Regulation Optimization (VRO) system to provide integrated VVO solutions. The VARO system takes network inputs and calculates optimal settings for distribution network capacitor banks.
摘要:
A method and computer program product for optimization of large scale resource scheduling problems. Large scale resource scheduling problems are computationally very hard and extremely time consuming to solve. This invention provides a Lagrangian relaxation based solution method. The method has two distinct characteristics. First, the method is formal. It is completely structure-based and does not use any problem domain specific knowledge in the solution process, either in the dual optimization or the primal feasibility enforcement process. Second, updating the Lagrangian multipliers after solution of every sub-problem without using penalty factors results in fast and smooth convergence in the dual optimization. The combination of high quality dual solution and the structure-based primal feasibility enforcement produces a high quality primal solution with very small solution gap. An optimal solution is first found to the dual of the resource scheduling problem by sequentially finding a solution to a plurality of sub-problems and updating a set of values used in the dual problem formulation after each sub-problem solution is obtained. Coupling constraint violations are systematically reduced and the set of values are updated until a feasible solution to the primal resource scheduling problem is obtained. An initial set of multiplier values is further determined by solving a relaxed version of the primal problem where most of the local constraints except the variable bounds are relaxed.
摘要:
Disclosed are a double-sided luminescent organic light emitting device and the manufacturing method thereof. The double-sided luminescent organic light emitting device comprises a transparent substrate (21), an anode (22), a transparent cathode (25), and at least two organic light emitting structures (23a, 23b) and at least a charge-generation layer (24) set between the anode (22) and the transparent cathode (25), and the charge-generation layer (24) is set between the two neighboring organic light emitting structures (23a, 23b), the charge-generation layer (24) and the organic light emitting structures (23a, 23b) are alternately arranged. The charge-generation layer (24) includes an n-type semiconductor layer (241) and a p-type semiconductor (242) layer combined with the n-type semiconductor layer. Said double-sided light emitting organic light emitting device requires low driving current, and has high luminescence efficiency, high brightness, and high light extraction efficiency. In addition, said device enables nearly 360 degrees omnidirectional illumination, enlarges the illumination area and the application range, and has long lifetime, simple preparation procedures and low production cost.
摘要:
An electrically conductive film is provided, which comprises a film formed of zinc oxide adulterated with alumina, silicon dioxide and magnesia. The transparence of the zinc oxide film is increased by means of magnesium ion in the adulterated magnesia widening the transparent window of the zinc oxide film, the conductivity is increased and thus the resistivity is reduced by means of adulterating with alumina and silicon dioxide, and the resistivity during working is stabilized by means of adulterating with alumina, silicon dioxide and magnesia. A method for manufacturing the electrically conductive film and an application therefor are also provided. The method has simple process, mild conditions, low cost and high productivity, which is suit for industrialized produce.
摘要:
Disclosed are a double-sided luminescent organic light emitting device and the manufacturing method thereof. The double-sided luminescent organic light emitting device comprises a transparent substrate (21), an anode (22), a transparent cathode (25), and at least two organic light emitting structures (23a, 23b) and at least a charge-generation layer (24) set between the anode (22) and the transparent cathode (25), and the charge-generation layer (24) is set between the two neighboring organic light emitting structures (23a, 23b), the charge-generation layer (24) and the organic light emitting structures (23a, 23b) are alternately arranged. The charge-generation layer (24) includes an n-type semiconductor layer (241) and a p-type semiconductor (242) layer combined with the n-type semiconductor layer. Said double-sided light emitting organic light emitting device requires low driving current, and has high luminescence efficiency, high brightness, and high light extraction efficiency. In addition, said device enables nearly 360 degrees omnidirectional illumination, enlarges the illumination area and the application range, and has long lifetime, simple preparation procedures and low production cost.
摘要:
An organic electroluminescence device is provided. The device comprises an anode base layer (110), a hole injection layer (120) on the anode base layer (110), a light emitting layer (130) on the hole injection layer (120), and a cathode electrode layer (140) on the light emitting layer (130). The material of the hole injection layer (120) is metal oxide or thiophene type compound. The hole injection layer (120) has advantages of improving the recombination probability of electron-hole and not being easily oxidized, so that the efficiency of the organic electroluminescence device is increased and the service life is prolonged. A method for manufacturing the organic electroluminescence device is also provided.