Abstract:
A seal assembly to seal a gas turbine hot gas path flow at an interface of a combustor liner and a downstream component, such as a stage one turbine nozzle, in a gas turbine. The seal assembly including a piston ring seal housing, defining a cavity, and a piston ring disposed within the cavity. The piston ring disposed circumferentially about the combustor liner. The piston ring is responsive to a regulated pressure to secure sealing engagement of the piston ring and outer surface of the combustor liner. The seal assembly includes at least one of one or more sectional through-slots, bumps or channel features to provide for a flow therethrough of a high-pressure (Phigh) bypass airflow exiting a compressor to the cavity. The high-pressure (Phigh) bypass airflow exerting a radial force on the piston ring.
Abstract:
A seal for a blind shear ram is configured to extend between a first carrier and a second carrier of the blind shear ram. The seal includes an outer layer configured to contact at least one of the first carrier and the second carrier to seal a wellbore when the blind shear ram is in a closed position. The outer layer has a first stiffness. The seal also includes an inner layer spaced from the outer layer. The inner layer has a second stiffness. The seal further includes an anti-extrusion structure extending between the inner layer and the outer layer. The anti-extrusion structure has a third stiffness greater than the first stiffness and the second stiffness. The outer layer covers the anti-extrusion structure.
Abstract:
A seal assembly for a rotary machine is provided. The seal assembly includes a plurality of seal segments disposed circumferentially intermediate to a stationary housing and a rotor, where each of the plurality of seal segments includes a stator interface element and a shoe plate movably supported by the stator interface element. The shoe plate includes one or more labyrinth teeth, a load-bearing surface, and one or more supply ports for facilitating supply of high pressure fluid toward the rotor. In one embodiment, the shoe plate also includes a radially extending portion that is in contact with a portion of the ring movably supported into the stator interface element. In another embodiment, each of the plurality of seal segments includes a plurality of overlapping spring-loaded leaf seal plates in contact with the stator interface element and the radially extending portion. Method of operating the seal segment is also disclosed.
Abstract:
Gas bearing for an aspirating seal assembly is disclosed. The gas bearing includes a bearing body having a bearing surface. The gas bearing further includes a first through-hole disposed in the bearing body, and a plurality of second through-holes spaced apart from each other and disposed around the first through-hole. The first through-hole is characterized by a size, and a first central axis. Each second through-hole is characterized by a size, and a second central axis. The second central axis of each second through-hole in the plurality of second through-holes intersects the first central axis at an angle in a range from about 30 degrees to about 150 degrees or at an angle in a range from about −30 degrees to about −150 degrees. Size of at least one through-hole in the plurality of second through-holes is different from the size of the first through-hole.
Abstract:
A flow control system for drilling a well comprises a conduit defining a channel configured to accommodate a drill pipe and a flow of a returning drilling fluid, and an acoustic sensor array configured to detect a flow rate of the returning drilling fluid. The flow control system further comprises a flow control device configured to control the flow rate of the returning drilling fluid and to be actuated in response to an event detected by the sensor array, the flow control device being proximate to the sensor array.
Abstract:
A method and system including a circumferential seal assembly for sealing between components within a turbine is provided. A circumferential seal assembly is disposed in a slot extending circumferentially about an inner barrel. The seal assembly includes a first shim layer and at least one additional shim layer configured in an overlapping stacked configuration so as to stagger the end portions of each of the shim segments defined by the shim layers, relative to one another and circumferentially about the seal assembly. One or more cloth layers are configured wrapping about the first shim layer and the at least one additional shim layer to define a sealing member having a first sealing surface and a second sealing surface. The assembly further including a base plate, wherein the sealing member is disposed on an upper surface of the base plate to provide for sealing engagement between the components of the turbine.
Abstract:
A flow control system for drilling a well comprises a conduit defining a channel configured to accommodate a drill pipe and a flow of a returning drilling fluid, and an acoustic sensor array configured to detect a flow rate of the returning drilling fluid. The flow control system further comprises a flow control device configured to control the flow rate of the returning drilling fluid and to be actuated in response to an event detected by the sensor array, the flow control device being proximate to the sensor array.
Abstract:
A fracturing system is described. The system includes an electric motor-driven pumping sub-system, configured to pump a pressurized fracturing fluid into at least one wellbore, under high pressure conditions sufficient to increase the downhole pressure of the wellbore, to exceed that of the fracture gradient of the solid matter surrounding the wellbore. The system also includes an electric power generation sub-system that provides energy to the pumping sub-system. The electric power generation sub-system includes a multitude of electric motors that are powered by a single electrical feed source. A related process for extracting hydrocarbons from a reservoir rock formation by the fracturing operation is also described.
Abstract:
A method of manufacturing an erosion-shielded turbine blade includes providing a turbine blade for use with a rotary machine. The turbine blade includes an airfoil extending between a root and a tip. The airfoil includes a pressure side and an opposite suction side, and each of the pressure and suction sides extends between a leading edge and a trailing edge. The method also includes printing a green body part by an additive manufacturing process by selectively depositing a binder solution across a particulate erosion-resistant material, and sintering the green body part to produce a post-sintering erosion shield that includes densified erosion-resistant material. The method also includes coupling the erosion shield to the leading edge of the turbine blade.
Abstract:
A thermal management system for transferring heat between fluids includes a thermal transport bus through which a heat exchange fluid flows. Additionally, the system includes a heat source heat exchanger arranged along the bus such that heat is added to the fluid flowing through the heat source heat exchanger. Moreover, the system includes a plurality of heat sink heat exchangers arranged along the bus such that heat is removed from the fluid flowing through the plurality of heat sink heat exchangers. Furthermore, the system includes a bypass conduit fluidly coupled to the bus such that the bypass conduit allows the fluid to bypass one of the heat source heat exchanger or one of the heat sink heat exchangers. In addition, the system includes a valve configured to control a flow of the fluid through the bypass conduit based on a pressure of the fluid within the bus.