Abstract:
A communication system and method for communicatively linking vehicles in a vehicle consist determine a vehicle identifier for a first remote vehicle included in a vehicle consist formed from a lead vehicle and at least the first remote vehicle. The system and method communicate a wireless linking message addressed to the vehicle identifier from the lead vehicle to the first remote vehicle, and establish a communication link between the lead vehicle and the first remote vehicle responsive to receipt of the wireless linking message at the first remote vehicle. The communication link is established such that movement of the first remote vehicle is remotely controlled from the lead vehicle via the communication link. The communication link is established without an operator entering the first remote vehicle.
Abstract:
A system and method for determining an orientation of a vehicle are provided. The system and method determine (with a sensor assembly disposed onboard a first vehicle) a direction in which a fluid flows within the first vehicle. The first vehicle is included in a vehicle consist with a second vehicle. The orientation of the first vehicle relative to the second vehicle is determined based at least in part on the direction in which the fluid flows within the first vehicle. The fluid may be air in an air brake pipe of the vehicle consist.
Abstract:
In a system and method for communicating data in a locomotive consist or other vehicle consist (comprising at least first and second linked vehicles), a first electronic component in the first vehicle of the vehicle consist is monitored to determine if the component is in (or enters) a failure state. In the failure state, the first electronic component is unable to perform a designated function. Upon determining the failure state, data is transmitted from the first vehicle to a second electronic component on the second vehicle, over a communication channel linking the first vehicle and the second vehicle. The second electronic component is operated based on the transmitted data, with the second electronic component performing the designated function that the first electronic component is unable to perform.
Abstract:
A communication system for a vehicle includes a transceiver assembly, a selection module, and a monitoring module. The transceiver assembly selectively communicates a data signal over a plurality of communication channels. The data signal is related to distributed power operations of the vehicle. The selection module is communicatively coupled with the transceiver assembly and switches the transceiver assembly to any of the communication channels. The monitoring module is communicatively coupled with the selection module and determines a load parameter of one or more of the communication channels. The load parameter is based on a population value of the one or more communication channels. The selection module switches the transceiver assembly to a selected channel of the communication channels based on the load parameter for communicating the data signal over the selected channel.
Abstract:
A communication system includes a first wireless communication device disposed onboard a vehicle system having two or more propulsion-generating vehicles that are mechanically interconnected with each other. The communication system also includes a controller configured to be disposed onboard the vehicle system and operatively connected with the first wireless communication device in order to control operations of the device. The controller is configured to direct the first wireless communication device to switch between operating in an off-board communication mode and an onboard communication mode. When the first wireless communication device is operating in the off-board communication mode, the device is configured to receive remote data signals from a location that is disposed off-board of the vehicle system. When the first wireless communication device is operating in the onboard communication mode, the device is configured to communicate local data signals between the propulsion-generating vehicles of the vehicle system.
Abstract:
A method includes obtaining data relating to operation of a first vehicle in a vehicle consist that includes the first vehicle and a second vehicle communicatively coupled with each other by a communication channel. The first vehicle includes a first electronic component performing functions for the first vehicle using the first data. The method also includes communicating the first data over the communication channel from the first vehicle to a second electronic component disposed onboard the second vehicle responsive to the first electronic component being unable to perform the one or more functions for the first vehicle using the first data. The method further includes performing the functions of the first electronic component with the second electronic component using the first data that is received from the first vehicle.
Abstract:
Systems and methods for communicating in a vehicle consist wirelessly communicate (using communication assemblies disposed onboard a vehicle consist) a movement control data message via a first wireless communication path between a lead vehicle and a remote vehicle of the vehicle consist. The vehicle consist includes the lead vehicle and the remote vehicle operably coupled with each other to travel along a route. A non-movement control data message also is wirelessly communicated, but via a different, second wireless communication path between the lead vehicle and the remote vehicle. The movement control data message is communicated to remotely control operation of the remote vehicle from the lead vehicle. The non-movement control data message is communicated to remotely report a status of a component onboard the remote vehicle.
Abstract:
In a system and method for communicating data in a locomotive consist or other vehicle consist (comprising at least first and second linked vehicles), a first electronic component in the first vehicle of the vehicle consist is monitored to determine if the component is in (or enters) a failure state. In the failure state, the first electronic component is unable to perform a designated function. Upon determining the failure state, data is transmitted from the first vehicle to a second electronic component on the second vehicle, over a communication channel linking the first vehicle and the second vehicle. The second electronic component is operated based on the transmitted data, with the second electronic component performing the designated function that the first electronic component is unable to perform.
Abstract:
A vehicle control system includes a controller that communicates between a first vehicle and a second vehicle and/or a monitoring device in a vehicle system. The controller determines a communication loss and, responsive to determining the communication loss, switches to communicating via a different communication path. The controller also determines an operational restriction on movement of the vehicle system based on the communication loss that is determined, obtains a transitional plan that designates operational settings of the vehicle system at one or more different locations along a route being traveled by the vehicle system, different distances along the route being traveled by the vehicle system, and/or different times. The controller automatically changes the movement of the vehicle system according to the operational settings designated by the transitional plan to reduce the movement of the vehicle system to or below the operational restriction.
Abstract:
A brake monitoring system and method determine one or more characteristics of a conduit in a first air brake system of a first vehicle system, compare the one or more characteristics of the first air brake system with one or more designated waveform signatures, and distinguish between communication of a brake application signal that is propagated along the vehicle system through the conduit as a decrease in pressure in the conduit and a change in the pressure in the conduit that is not representative of the communication of the brake application signal based on comparing the one or more characteristics with the one or more designated waveform signatures.