Abstract:
A method of fabricating a component is provided. The method includes depositing particles onto a build platform. The method also includes distributing the particles to form a build layer. The method further includes operating a consolidation device to consolidate a first plurality of particles along a scan path to form a component. The component includes a top surface spaced apart from the build platform and an outer surface. The outer surface extends between the build platform and the top surface, and at least a portion of the outer surface faces a substantially particle-free region of the build platform.
Abstract:
Some embodiments facilitate creation of an industrial asset item via an additive manufacturing process wherein motion is provided between a build plate and a print arm. A correction engine may receive, from an industrial asset item definition data store containing at least one electronic record defining the industrial asset item, the data defining the industrial asset item. A correction engine computer processor may then correct the motion provided between the build plate and the print arm such that the motion deviates from a path indicated by the data defining the industrial asset item. The three-dimension printer may be a rotary printer such that the build plate rotates about a vertical axis and moves along the vertical axis during printing. In these cases, a pre-compensation algorithm may be applied to correct the motion provided between the build plate and the print arm before transmitting data to the three-dimensional additive manufacturing printer.
Abstract:
An additive manufacturing system configured to manufacture a component including scan strategies for efficient utilization of one or more laser arrays. The additive manufacturing system includes at least one laser device, each configured as a laser array, and a build platform. Each laser device is configured to generate a plurality of laser beams. The component is disposed on the build platform. The at least one laser device is configured to sweep across the component and the build platform in at least one of a radial direction, a circumferential direction or a modified zig-zag pattern and simultaneously operate the one or more of the plurality of individually operable laser beams corresponding to a pattern of the layer of a build to generate successive layers of a melted powdered material on the component and the build platform corresponding to the pattern of the layer of the build. A method of manufacturing a component with the additive manufacturing system is also disclosed.
Abstract:
Methods and systems for fabricating a component by consolidating a particulate include a build platform configured to receive a particulate, a particulate dispenser configured to deposit the particulate on the build platform, and at least one print head including at least one jet. The at least one print head is configured to dispense a binder through the at least one jet onto the particulate to consolidate at least a portion of the particulate and form a component. The methods and systems also include at least one actuator assembly configured to rotate at least one of the at least one print head and the build platform about a rotation axis extending through the build platform and move at least one of the at least one print head and the build platform in a build direction perpendicular to the build platform as part of a helical build process for the component.
Abstract:
A component is fabricated in a powder bed by moving a laser array across the powder bed. The laser array includes a plurality of laser devices. The power output of each laser device of the plurality of laser devices is independently controlled. The laser array emits a plurality of energy beams from a plurality of selected laser devices of the plurality of laser devices to generate a melt pool in the powder bed. A non-uniform energy intensity profile is generated by the plurality of selected laser devices. The non-uniform energy intensity profile facilitates generating a melt pool that has a predetermined characteristic.
Abstract:
A computerized method, system, program product and additive manufacturing (AM) system are disclosed. Embodiments provide for modifying object code representative of an object to be physically generated layer by layer by a computerized AM system using the object code. The computerized method may include providing an interface to allow a user to manually: select a region within the object in the object code, the object code including a plurality of pre-assigned build strategy parameters for the object that control operation of the computerized AM system, and selectively modify a build strategy parameter in the selected region in the object code to change an operation of the computerized AM system from the plurality of pre-assigned build strategy parameters during building of the object by the computerized AM system.
Abstract:
Methods, apparatus, systems and articles of manufacture are disclosed to generate a workscope. An example apparatus includes a workscope mapper, workscope strategy analyzer, and workscope selector. The workscope strategy analyzer is to evaluate each of the plurality of workscopes using dynamic optimization to determine a maintenance value and benefit to an asset associated with each workscope based on a stage in a remaining life of a constraint at which the evaluation is executed and a state of the asset. The dynamic optimization is to determine a prediction of the maintenance value based on a probability of a future change in state and associated workscope value until the end of life of the constraint. The maintenance value, used to select a workscope from the plurality of workscopes, is to be determined by the dynamic optimization as a sum of the associated workscope values until the end of life of the constraint.
Abstract:
A computerized method, system, program product and additive manufacturing (AM) system are disclosed. Embodiments provide for modifying object code representative of an object to be physically generated layer by layer by a computerized AM system using the object code. The computerized method may include providing an interface to allow a user to manually: select a region within the object in the object code, the object code including a plurality of pre-assigned build strategy parameters for the object that control operation of the computerized AM system, and selectively modify a build strategy parameter in the selected region in the object code to change an operation of the computerized AM system from the plurality of pre-assigned build strategy parameters during building of the object by the computerized AM system.
Abstract:
Methods for testing turbine blades. One method for testing turbine blades includes measuring dimensions of each of a first set of turbine blades. The method also includes testing airflow through first openings in each of the first set of turbine blades to determine airflow properties of each of the first set of turbine blades. The method includes determining a relationship between the dimensions and the airflow properties of each of the first set of turbine blades. The method includes measuring dimensions of each of a second set of turbine blades. The method also includes determining airflow properties for each of the second set of turbine blades based at least partially on the dimensions of the second set of turbine blades and the relationship.
Abstract:
The present disclosure relates to the use of both semantic analysis and statistical text mining to process data records, improving the completeness and accuracy of records so processed. By way of example, a data record may be iteratively processed by text mining using seeds derived from a semantic template and by validating the results based on semantic reasoning based on the semantic template.