Abstract:
A power converter is provided. The power converter includes a converter leg including switches for converting power. The power converter also includes a controller for switching the switches using a pulse width modulation technique. The power converter further includes an interface inductor coupled to the converter leg for avoiding a reverse recovery of current in the switches during operation.
Abstract:
A high-voltage direct-current (HVDC) transmission system includes an alternating current (AC) electrical source and a power converter channel that includes an AC-DC converter electrically coupled to the electrical source and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and the DC-AC inverter each include a plurality of legs that includes at least one switching device. The power converter channel further includes a commutating circuit communicatively coupled to one or more switching devices. The commutating circuit is configured to “switch on” one of the switching devices during a first portion of a cycle of the H-bridge switching circuits and “switch off” the switching device during a second portion of the cycle of the first and second H-bridge switching circuits.
Abstract:
A voltage source converter based high-voltage direct-current (HVDC) transmission system includes a voltage source converter (VSC)-based power converter channel. The VSC-based power converter channel includes an AC-DC converter and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and a DC-AC inverter include at least one gas tube switching device coupled in electrical anti-parallel with a respective gas tube diode. The VSC-based power converter channel includes a commutating circuit communicatively coupled to one or more of the at least one gas tube switching devices. The commutating circuit is configured to “switch on” a respective one of the one or more gas tube switching devices during a first portion of an operational cycle and “switch off” the respective one of the one or more gas tube switching devices during a second portion of the operational cycle.
Abstract:
A converter system includes a power converter including a first bridge circuit including at least one first switching device. The power converter also includes a second bridge circuit magnetically coupled to the first bridge circuit. The second bridge circuit includes at least one second switching device. The converter system also includes a plurality of first conductors of opposing polarities coupled to the first bridge circuit. The converter system further includes a plurality of second conductors of opposing polarities. At least one second conductor of the plurality of second conductors is coupled to the second bridge circuit. The converter system also includes a third conductor coupled to one first conductor of the plurality of first conductors and coupled to the second bridge circuit.
Abstract:
A method implemented using at least one processor includes receiving a plurality of images acquired from a plurality of image sensors disposed on a vehicle configured to engage an aircraft for ground operations. The method further includes determining at least one parameter about a potential obstacle based on the plurality of images and a machine vision algorithm. The method also includes generating an alert signal based on the at least one parameter, useful for avoiding collision of the aircraft.
Abstract:
A power converter is provided. The power converter includes a converter leg comprising a plurality of active power link modules coupled to each other. Each of the plurality of active power link module includes exactly two semiconductor switches comprising antiparallel diodes and wherein the antiparallel diodes are coupled in parallel to the respective switches, a filter inductor coupled to a node between the two semiconductor switches, a filter capacitor coupled in parallel across the at least two semiconductor switches and a power storage element directly coupled in parallel to the filter capacitor.
Abstract:
An electric propulsion system includes at least one generator. The electric propulsion system also includes at least one drive engine coupled to the at least one generator. The electric propulsion system further includes at least one electrical device. The electric propulsion system also includes at least one battery integrated isolated power converter (BIIC), where the at least one generator and at least one of the at least one BIIC and the at least one electrical device are coupled, and where the at least one BIIC and the at least one electrical device are coupled.
Abstract:
A system for integrating energy storage into a modular power converter includes at least one energy storage unit coupled to a first converter for converting a first direct current (DC) voltage of the at least one energy storage unit into a first high frequency alternating current (AC) voltage. At least three phase legs of the modular power converter generate three phase AC voltages. Each phase leg includes a plurality of switching modules connected in series. The switching modules have a plurality of fully controllable semiconductor switches, an energy storage device, and a second converter coupled to the respective energy storage device for converting a second DC voltage of the energy storage device into a second high frequency AC voltage. In the system, three similarly positioned switching modules of the three phase legs form one power unit. Further, a high frequency transformer is provided which has at least one primary winding connected to the first converter and at least three secondary windings, each connected to the second converter of each of the three similarly positioned switching modules. A controller is configured to regulate at least one electrical parameter of the modular power converter.
Abstract:
An electrical propulsion system for a vehicle. The electrical propulsion system includes at least one generator. The electrical propulsion system also includes at least one drive engine coupled to the at least one generator. The electrical propulsion system further includes at least one electrical device and at least one battery integrated power converter (BIC). The at least one generator and at least one of the at least one BIC and the at least one electrical device are coupled. The at least one BIC and the at least one electrical device are coupled.
Abstract:
A modular power converter system includes a plurality of active power link modules (APLMs) coupled to each other, each APLM having a plurality of switching devices including first and second switching devices coupled to each other, and at least one first-type energy storage device (ESD) coupled in parallel with both of the first and second switching devices, the first-type ESD configured to induce a first direct current (DC) voltage. The system also includes a plurality of relays coupled to the first-type ESD, and a charge controller coupled to at least one APLM of the plurality of APLMs and coupled to at least one of an electrical power source and a discharge circuit. The charge controller is configured to alternately charge and discharge the first-type ESD in response to a plurality of switching states including switching states of the plurality of switching devices and the plurality of relays.