Abstract:
A nitrogen oxides (NOx) and hydrocarbon (HC) storage catalyst for treating an exhaust gas flow is provided. The NOx and HC storage catalyst includes (a) a zeolite, (b) noble metal atoms, and (c) a metal oxide, a non-metal oxide, or a combination thereof. One or more of the noble metal atoms is present in a complex with the metal oxide, the non-metal oxide or a combination thereof. The complex is dispersed within a cage of the zeolite. Methods of preparing the NOx and HC storage catalyst and methods of using the NOx and HC storage catalyst for treating an exhaust gas stream flowing from a vehicle internal combustion engine during a period following a cold-start of the engine are also provided.
Abstract:
A method for monitoring and diagnosing an engine exhaust treatment of an internal combustion engine in a motor vehicle includes monitoring a nitrogen oxides (NOx) storage catalyst disposed in an engine exhaust stream downstream of the engine, determining a first diagnostic condition of the NOx storage catalyst based on data from a first EGT sensor and a second EGT sensor; determining a second diagnostic condition of the NOx storage catalyst based on a comparison of temperatures reported by a first NOx sensor and a second NOx sensor, selectively pausing the first diagnostic condition and the second diagnostic condition during a predetermined NOx storage catalyst regeneration period, and selectively generating a notification for an operator of the motor vehicle.
Abstract:
Technical solutions are described for limiting exposure of components of an emissions control system to rich exhaust conditions. An example an emissions control system includes an oxygen storage component; and a controller that limits exposure of the oxygen storage component to rich exhaust conditions. The limiting includes determining an air-to-fuel equivalence ratio in exhaust gas in response to an engine receiving a request to generate torque, the request including a displacement of a pedal; determining an amount of oxygen in the exhaust gas based on the air-to-fuel equivalence ratio; determining an oxygen level stored by the oxygen storage component; and if the oxygen level is above a predetermined threshold, lowering a torque generation rate of the engine, which specifies amount of torque generated per unit displacement of the pedal.
Abstract:
An after-treatment (AT) system used to treat an exhaust gas flow emitted by an internal combustion engine includes a catalyst monolith configured to actively remove a pollutant from the exhaust gas flow. The AT system also includes a heating element configured to heat the catalyst monolith. The AT system additionally includes an energy-discharge unit configured to power the heating element. The energy-discharge unit includes an energy-storage device configured to supply electrical energy. The energy-discharge unit also includes a capacitor configured to receive the electrical energy from the energy-storage device and discharge the received electrical energy to power the heating element and thereby heat the catalyst monolith. A vehicle having an internal combustion engine operatively connected to such an AT system is also contemplated.
Abstract:
A vehicle includes a NOx storage converter to receive exhaust gases from a diesel engine, store at least a minimum amount of the NOx at a temperature below a storage threshold, release the NOx at a temperature above a releasing threshold, oxidize hydrocarbon, and oxidize carbon monoxide. An input temperature sensor at an entrance to the NOx storage converter determines an input temperature of the exhaust gases. An output temperature sensor is at an output of the NOx storage converter to determine an output temperature of the exhaust gases. A control module receives the input temperature and the output temperature, determines a magnitude of an exotherm in the NOx storage converter, and stores an electronic fault code in a computer memory in response to the magnitude of the exotherm being below a minimum temperature. The fault code indicates a reduction in a NOx storage capacity of the NOx storage converter.
Abstract:
A method is disclosed of providing a fuel efficient regeneration of an exhaust after-treatment (AT) system that includes a lean oxides of nitrogen (NOX) trap (LNT) and a selective catalytic reduction filter (SCRF) positioned downstream of the LNT. The method includes regulating a selectable position valve. The valve permits a first gas flow portion to pass through the LNT and diverts a remaining second portion of exhaust gas flow from a first passage connecting an engine and the AT system to a second exhaust passage to thereby bypass the LNT. The method also includes regulating a first device to inject fuel into the first portion of the exhaust gas flow. The injection of fuel in to the first portion of the exhaust gas flow provides fuel efficient regeneration of the LNT and promotes NOX conversion and ammonia (NH3) formation in the LNT. A system employing the method is also disclosed.
Abstract:
Nitrogen oxides (NOx), carbon monoxide (CO), and residual hydrocarbons are adsorbed and stored from a low temperature, cold-start, diesel engine (or lean-burn gasoline engine) exhaust stream by a combination of a silver-based (Ag/Al2O3) NOx adsorber material and a zeolite-platinum group metal (zeolite-PGM) adsorber material for low temperature temporary storage of the NOx. The combination of NOx adsorber materials is formed as separate washcoats on channel walls of an extruded flow-through monolithic support. The monolith is located near the exhaust manifold of the lean burn engine where the combination of NOx adsorber particles temporarily adsorb exhaust constituents, and commence oxidation of them, until the progressively warming exhaust stream removes the stored constituents and carries them through the exhaust pipe to downstream NOx reduction converters which have been heated to their operating temperatures and complete the conversion of the NOx constituents to nitrogen and water for discharge from the vehicle's exhaust system.
Abstract:
A method of determining aging of a diesel oxidation catalyst (DOC) in an engine exhaust system includes receiving a first sensor signal from a first nitrogen oxides (NOx) sensor positioned in exhaust flow upstream of the DOC. The first sensor signal is indicative of an amount of NOx in the exhaust flow upstream of the DOC. The method further includes receiving a second sensor signal from a second NOx sensor positioned in exhaust flow downstream of the DOC. The second sensor signal is indicative of an amount of NOx downstream of the DOC. A difference between the first sensor signal and the second sensor signal is calculated via a controller. A DOC aging level based on a predetermined correlation between the difference and DOC aging is then determined by the controller.