Abstract:
A corrosion inhibition composition is disclosed comprising a zinc oxide, a zinc hydroxide benzoate, a sodium benzoate, a molybdate compound and a silicate compound. Moreover, a corrosion inhibition composition is disclosed comprising a zinc oxide, a zinc phosphate, a calcium silicate, an aluminum phosphate, a zinc calcium strontium aluminum orthophosphate silicate hydrate, a molybdate, and a silicate compound.
Abstract:
A drive shaft for transferring torque including a tubular insert extending along an axis and defining a first layer of the drive shaft including at least one straight portion and at least one undulation, wherein the tubular insert includes a first material having a first deformation temperature, and a polymeric tubular covering defining a second layer of the drive shaft surrounding the tubular insert including a second material having a deformation temperature lower than the deformation temperature of the first material, wherein the covering includes at least one straight portion adjacent to the straight portion of the tubular insert and at least one undulation adjacent to the at least one undulation of the tubular insert.
Abstract:
In accordance with at least one aspect of this disclosure, a composite structure can be formed of or including a plurality of composite strips. The plurality of composite strips include one or more filler strips which can have at least one filler edge having a filler edge geometry between a first surface and second surface, the second surface being opposite the first surface. The filler edge geometry can be configured to prevent formation of one or more gaps between one or more adjacent composite strips.
Abstract:
A method of disposing a corrosion resistant system to a substrate may comprise applying a plating material to the substrate; forming a chemical conversion coating solution by combining a solvent, at least one corrosion inhibitive cation comprising at least one of zinc, calcium, strontium, magnesium, or aluminum, at least one corrosion inhibitive anion comprising at least one of phosphate, molybdate, or silicate, and a complexing agent; and applying the chemical conversion coating solution to the plating material on the substrate.
Abstract:
A composite tube joint may comprise an end of a composite tube, an inner member disposed within the end, wherein an outer surface of the inner member has a complementary shape to an inner surface of the end, an outer member concentrically surrounding the end of the composite tube, and an undulated surface configured to mitigate movement of the end of the composite tube relative to at least one of the inner member and the outer member.
Abstract:
A drive shaft for transferring torque including a tubular insert extending along an axis and defining a first layer of the drive shaft including at least one straight portion and at least one undulation, wherein the tubular insert includes a first material having a first deformation temperature, and a polymeric tubular covering defining a second layer of the drive shaft surrounding the tubular insert including a second material having a deformation temperature lower than the deformation temperature of the first material, wherein the covering includes at least one straight portion adjacent to the straight portion of the tubular insert and at least one undulation adjacent to the at least one undulation of the tubular insert.
Abstract:
A landing gear arrangement may comprise a first composite layer, the first composite layer having a cylindrical geometry, a metallic ring comprising an inner surface and an outer surface, the metallic ring perimetrically surrounding at least a portion of the first composite layer, the inner surface being in contact with the first composite layer, a metallic connecting tab extending away from the outer surface, and a second composite layer at least partially perimetrically surrounding the metallic ring and at least partially perimetrically surrounding the first composite layer, the outer surface being in contact with the second composite layer.
Abstract:
A corrosion inhibition composition is disclosed comprising a zinc oxide, a zinc phosphate, a calcium silicate, an aluminum phosphate, a zinc calcium strontium aluminum orthophosphate silicate hydrate, a molybdate compound, a silicate compound, and a zinc phthalate compound.
Abstract:
A composite tube joint may comprise an end of a composite tube, an inner member disposed within the end, wherein an outer surface of the inner member has a complementary shape to an inner surface of the end, an outer member concentrically surrounding the end of the composite tube, and an undulated surface configured to mitigate movement of the end of the composite tube relative to at least one of the inner member and the outer member.
Abstract:
A corrosion inhibition composition is disclosed comprising a zinc oxide, a zinc phosphate, a calcium silicate, an aluminum phosphate, a zinc calcium strontium aluminum orthophosphate silicate hydrate, a molybdate compound, a silicate compound, and a zinc phthalate compound.