Abstract:
Brake disks with integrated heat sink are provided. Brake disk includes a fiber-reinforced composite material and an encapsulated heat sink material impregnated into the fiber-reinforced composite material. The encapsulated heat sink material comprises a heat sink material encapsulated within a silicon-containing encapsulation layer. Methods for manufacturing the brake disk with integrated heat sink and methods for producing the encapsulated heat sink material are also provided.
Abstract:
A method of disposing a corrosion resistant system to a substrate may comprise applying a plating material to the substrate; forming a chemical conversion coating solution by combining a solvent, at least one corrosion inhibitive cation comprising at least one of zinc, calcium, strontium, magnesium, or aluminum, at least one corrosion inhibitive anion comprising at least one of phosphate, molybdate, or silicate, and a complexing agent; and applying the chemical conversion coating solution to the plating material on the substrate.
Abstract:
A corrosion inhibition composition is disclosed comprising a cerium, a silicate compound, and a molybdate compound. Moreover, a corrosion inhibition composition is disclosed comprising a cerium, a silicate compound, a tungstate and a molybdate compound.
Abstract:
A corrosion inhibition composition is disclosed comprising a cerium, a silicate compound, and a molybdate compound. Moreover, a corrosion inhibition composition is disclosed comprising a cerium, a silicate compound, a tungstate and a molybdate compound.
Abstract:
In accordance with at least one aspect of this disclosure, a composite structure can be formed of or including a plurality of composite strips. The plurality of composite strips include one or more filler strips which can have at least one filler edge having a filler edge geometry between a first surface and second surface, the second surface being opposite the first surface. The filler edge geometry can be configured to prevent formation of one or more gaps between one or more adjacent composite strips.
Abstract:
A method of disposing a corrosion resistant system to a substrate may comprise applying a plating material to the substrate; forming a chemical conversion coating solution by combining a solvent, at least one corrosion inhibitive cation comprising at least one of zinc, calcium, strontium, magnesium, or aluminum, at least one corrosion inhibitive anion comprising at least one of phosphate, molybdate, or silicate, and a complexing agent; and applying the chemical conversion coating solution to the plating material on the substrate.
Abstract:
A corrosion inhibition composition is disclosed comprising a cerium, a tungstate, a molybdate and silicate compounds. A corrosion inhibition composition is provided comprising a zinc oxide, a zinc hydroxide benzoate, a sodium benzoate, a molybdate and a silicate compound. A corrosion inhibition composition is provided comprising a zinc oxide, a zinc phosphate, a calcium silicate, an aluminum phosphate, a zinc calcium strontium aluminum orthophosphate silicate hydrate, a molybdate, and silicate compounds.
Abstract:
A corrosion inhibition composition is disclosed comprising a cerium, a tungstate, a molybdate and silicate compounds. A corrosion inhibition composition is provided comprising a zinc oxide, a zinc hydroxide benzoate, a sodium benzoate, a molybdate and a silicate compound. A corrosion inhibition composition is provided comprising a zinc oxide, a zinc phosphate, a calcium silicate, an aluminum phosphate, a zinc calcium strontium aluminum orthophosphate silicate hydrate, a molybdate, and silicate compounds.
Abstract:
A corrosion inhibition composition is disclosed comprising a zinc oxide, a zinc hydroxide benzoate, a sodium benzoate, a molybdate compound and a silicate compound. Moreover, a corrosion inhibition composition is disclosed comprising a zinc oxide, a zinc phosphate, a calcium silicate, an aluminum phosphate, a zinc calcium strontium aluminum orthophosphate silicate hydrate, a molybdate, and a silicate compound.
Abstract:
A drive shaft for transferring torque including a tubular insert extending along an axis and defining a first layer of the drive shaft including at least one straight portion and at least one undulation, wherein the tubular insert includes a first material having a first deformation temperature, and a polymeric tubular covering defining a second layer of the drive shaft surrounding the tubular insert including a second material having a deformation temperature lower than the deformation temperature of the first material, wherein the covering includes at least one straight portion adjacent to the straight portion of the tubular insert and at least one undulation adjacent to the at least one undulation of the tubular insert.