Abstract:
A noise cancelation system for an unmanned aerial vehicle may have an audio capture module, a metadata module and a filter. The audio capture module may be configured to receive an audio signal captured from a microphone, e.g., on a camera. The metadata module may be configured to retrieve noise information associated with noise generating components operating on the unmanned aerial vehicle (UAV). The filter may be configured to receive the audio signal and noise information from the audio capture module. The filter also may be configured to retrieve a baseline profile from a database based on the noise information. The baseline profile includes noise parameter to filter out audio frequencies from the audio signal corresponding to the noise generating component. The filter may generate a filtered audio signal for output.
Abstract:
An opto-acoustic transducer may include a light source, a substrate, a top layer, an interstitial layer, a lens, and a detector array. The light source may generate light beams. The substrate may reflect the light beams generated by the light source. The top layer may modulate responsive to an acoustical wave impingent thereupon and may reflect the light beams generated by the light source. The interstitial layer may be between the substrate and the top layer and may include a cavity which acts as an optical collector. The lens may propagate the light beams reflected by the substrate and the light beams reflected by the top layer. The detector array may reconstruct the acoustical wave impingent on the top layer based on the light beams propagated by the lens.
Abstract:
An image processor adjusts luminance values of pixels in a captured image to compensate for effects on focal quality due to thermal expansion or contraction. Responsivity values for different colors are characterized and a table is generated mapping temperature values to weights for each pixel color based on the relationship between temperature and focal length and the relationship between focal length and focal quality in each different color. Luminance values for one color may be compensated based on the measured luminance values for other colors, the relative responsivity values, and the weights.
Abstract:
This disclosure relates to providing flight control for an unmanned aerial vehicle based on opposing fields of view with overlap. The UAV may include a housing, a motor, a first image sensor, a second image sensor, a first optical element having a first field of view greater than 180 degrees, a second optical element having a second field of view greater than 180 degrees, and one or more processors. The first optical element and the second optical element may be carried by the housing such that a centerline of the second field of view is substantially opposite from a centerline of the first field of view, and a peripheral portion of the first field of view and a peripheral portion of the second field of view overlap. Flight control for the UAV may be provided based on parallax disparity of an object within the overlapping fields of view.
Abstract:
Multiple cameras are arranged in an array at a pitch, roll, and yaw that allow the cameras to have adjacent fields of view such that each camera is pointed inward relative to the array. The read window of an image sensor of each camera in a multi-camera array can be adjusted to minimize the overlap between adjacent fields of view, to maximize the correlation within the overlapping portions of the fields of view, and to correct for manufacturing and assembly tolerances. Images from cameras in a multi-camera array with adjacent fields of view can be manipulated using low-power warping and cropping techniques, and can be taped together to form a final image.
Abstract:
An unmanned aerial vehicle manages storage of data and transfer between other connected devices. The unmanned aerial vehicle captures sensor data from sensors on the unmanned aerial vehicle. The unmanned aerial vehicle transfers the captured sensor data from the unmanned aerial vehicle to a remote controller via a wireless interface. The captured data may be transferred via a TCP link, a UDP link, or a combination thereof. If a loss of link is detected, the captured sensor data is stored to a buffer and a battery level of the unmanned aerial vehicle and a flight status of the unmanned aerial vehicle is monitored. The stored sensor data is transferred from the buffer to a non-volatile storage responsive to the battery level dropping below a predefined threshold or detecting that the unmanned aerial vehicle is stationary and a shutdown may be imminent.
Abstract:
Disclosed is an electronic gimbal with camera and mounting configuration. The gimbal can include an inertial measurement unit which can sense the orientation of the camera and three electronic motors which can manipulate the orientation of the camera. The gimbal can be removably coupled to a variety of mount platforms, such as an aerial vehicle, a handheld grip, or a rotating platform. Moreover, a camera can be removably coupled to the gimbal and can be held in a removable camera frame. Also disclosed is a system for allowing the platform, to which the gimbal is mounted, to control settings of the camera or to trigger actions on the camera, such as taking a picture, or initiating the recording of a video. The gimbal can also provide a connection between the camera and the mount platform, such that the mount platform receives images and video content from the camera.
Abstract:
A variable pitch propeller is designed to adjust the pitch of the propeller blade during flight to maximize the propeller efficiency. The propeller blade may comprise airfoil cross-sections. Each cross-section may be composed of different materials at the leading edge and trailing edge. In various embodiments, these materials are selected and oriented to achieve the necessary elastic moduli of the leading and trailing edge for the airfoil cross-section. During liftoff, the airfoil at the blade tip possesses a high blade pitch (e.g. 20 degrees), thereby increasing the generated lift on the propeller blades. During flight or hover conditions when maximal lift is no longer required, the trailing edge of the airfoil displaces upward and reduces the blade pitch to minimize the drag forces on the blade tip.
Abstract:
An unmanned aerial vehicle manages storage of data and transfer between other connected devices. The unmanned aerial vehicle captures sensor data from sensors on the unmanned aerial vehicle. The unmanned aerial vehicle transfers the captured sensor data from the unmanned aerial vehicle to a remote controller via a wireless interface. The captured data may be transferred via a TCP link, a UDP link, or a combination thereof. If a loss of link is detected, the captured sensor data is stored to a buffer and a battery level of the unmanned aerial vehicle and a flight status of the unmanned aerial vehicle is monitored. The stored sensor data is transferred from the buffer to a non-volatile storage responsive to the battery level dropping below a predefined threshold or detecting that the unmanned aerial vehicle is stationary and a shutdown may be imminent.
Abstract:
This disclosure relates to providing flight control for an unmanned aerial vehicle based on opposing fields of view with overlap. The UAV may include a housing, a motor, a first image sensor, a second image sensor, a first optical element having a first field of view greater than 180 degrees, a second optical element having a second field of view greater than 180 degrees, and one or more processors. The first optical element and the second optical element may be carried by the housing such that a centerline of the second field of view is substantially opposite from a centerline of the first field of view, and a peripheral portion of the first field of view and a peripheral portion of the second field of view overlap. Flight control for the UAV may be provided based on parallax disparity of an object within the overlapping fields of view.