Abstract:
An energy storage device includes: a positive electrode plate containing a positive composite layer including a positive active material capable of occluding and releasing a lithium ion; and a negative electrode plate containing a negative composite layer including a negative active material capable of occluding and releasing a lithium ion. A peak pore diameter Rp of the positive composite layer in a pore distribution measured by a mercury penetration method is 0.5 μm or less, and a peak pore diameter Rn of the negative composite layer in a pore distribution measured by a mercury penetration method is 0.5 μm or less. A ratio Rp/Rn of the peak pore diameter of the positive composite layer to the peak pore diameter of the negative composite layer is 0.60 or more and 1.70 or less.
Abstract:
An energy storage device includes: an electrode assembly which includes: an approximately rectangular positive electrode; an approximately rectangular negative electrode which is stacked alternately with the positive electrode; and a strip-like elongated separator having a base material layer and an inorganic layer which is made to overlap with the first base material layer, wherein the elongated separator is arranged between the positive electrode and the negative electrode, and the base material layer of the elongated separator faces the negative electrode in an opposed manner between the positive electrode and the negative electrode.
Abstract:
An energy storage device includes a positive electrode, a negative electrode, and a nonaqueous electrolyte solution. The negative electrode includes an active material layer, and the active material layer has pores having a pore size of 0.1 μm or more and 1.0 μm or less, and a total volume of the pores is 0.26 cm3/g or more and 0.46 cm3/g or less.
Abstract:
An energy storage device including a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte, wherein the negative electrode includes a negative electrode active material layer containing a non-graphitizable carbon as a negative electrode active material, and the negative electrode active material has a negative electrode active material weight per unit volume of the negative electrode active material layer of 0.92 g/cc or more and 1.13 g/cc or less and a particle size D90 of 4.3 μm or more and 11.5 μm or less, the particle size D90 being a particle size in particle size distribution in which a cumulative volume is 90%.
Abstract:
An electric storage device includes: a positive electrode; a negative electrode; and a separator placed between the positive electrode and the negative electrode. The positive electrode includes a positive electrode substrate, a positive active material layer formed on the positive electrode substrate, and a protective layer that covers at least one of side surfaces in a width direction of the positive active material layer. The negative electrode includes a negative electrode substrate and a negative active material layer formed on the negative electrode substrate. The separator includes a separator substrate opposed to the negative active material layer, and an inorganic layer containing a binder, the inorganic layer formed on the separator substrate and opposed to the positive active material layer.
Abstract:
An electric storage device includes: a container; an electrode assembly contained in the container, the electrode assembly including a positive electrode having a positive electrode substrate and a positive electrode active material layer that is formed on the positive electrode substrate and contains a positive electrode active material, a negative electrode having a negative electrode substrate and a negative electrode active material layer that is formed on the negative electrode substrate and contains a negative electrode active material, and a separator interposed between the positive and negative electrodes; and an electrolyte contained in the container, wherein the separator is configured such that a stress caused at a specific compressed depth in the separator, which corresponds to 5% of the thickness of the negative electrode active material layer, is 0.5 MPa or more and 14 MPa or less. An electric storage apparatus includes a plurality of electric storage devices described above.
Abstract:
An energy storage unit having plural energy storage devices, each of which includes a container housing an electrode assembly and positive and negative electrode terminals electrically connected to the electrode assembly and extending from the container in the same direction, includes: a bus bar electrically connecting a first terminal, which is one of the positive electrode terminal and the negative electrode terminal of a first energy storage device included in the plural energy storage devices, and a second terminal, which is one of the positive electrode terminal and the negative electrode terminal of a second energy storage device included in the plural energy storage devices and opposite in polarity to the first terminal; a packing member interposed between the first terminal and the container of the first energy storage device; and an insulating member interposed between the bus bar and the container of the first energy storage device.
Abstract:
An energy storage device including a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte, wherein the negative electrode includes non-graphitizable carbon as a negative electrode active material, and the separator has a thickness of 10 to 30 μm and an air permeability of 10 to 180 sec/100 cc.
Abstract:
An energy storage element, wherein a non-aqueous electrolyte contains lithium difluorobis(oxalato)phosphate that is a first additive represented by Formula (1): and lithium tetrafluorooxalatophosphate that is a second additive represented by Formula (2): wherein the amount of the first additive to be added is not less than 0.3% by weight and not more than 1.0% by weight based on the total weight of the non-aqueous electrolyte, and the amount of the second additive to be added is not less than 0.05 times and not more than 0.3 times the amount of the first additive to be added.
Abstract:
A separator for a battery according to the present disclosure (present separator) is held between a positive electrode and a negative electrode of the battery and includes an inorganic layer formation part and an inorganic layer non-formation part formed at an end. In addition, a nonaqueous electrolytic secondary battery according to the present disclosure includes: an electrode assembly including: a positive electrode having an active material layer including a positive electrode active material and a positive electrode current collector foil exposure part; a negative electrode having an active material layer including a negative electrode active material and a negative electrode current collector foil exposure part; and the present separator held between the positive electrode and the negative electrode; a case for housing the electrode assembly; and an electrolyte held between the positive electrode and the negative electrode.