Abstract:
An energy storage device includes a positive electrode provided with a positive composite layer containing a positive active material, a negative electrode provided with a negative composite layer containing a negative active material, and a separator partitioning between the positive electrode and the negative electrode, wherein the separator includes a substrate uniaxially drawn into a sheet shape and a coating layer coating at least one of surfaces of the substrate, and the coating layer has an anisotropic structure with orientation in a direction different from a drawing direction of the substrate.
Abstract:
An energy storage device is provided in which a decrease in power caused by repetitive charge-discharge in a high-temperature environment is suppressed. In the present embodiment, an energy storage device and a method for manufacturing the energy storage device are provided, the energy storage device including an electrode which includes: an active material layer including a particulate active material; and a conductive layer layered on the active material layer and including a conduction aid. An average secondary particle diameter of the active material is 2.5 μm or more and 6.0 μm or less. A surface roughness Ra of the conductive layer on a side on the active material layer is 0.17 μm or more and 0.50 μm or less.
Abstract:
An electric storage device includes: a container; an electrode assembly contained in the container, the electrode assembly including a positive electrode having a positive electrode substrate and a positive electrode active material layer that is formed on the positive electrode substrate and contains a positive electrode active material, a negative electrode having a negative electrode substrate and a negative electrode active material layer that is formed on the negative electrode substrate and contains a negative electrode active material, and a separator interposed between the positive and negative electrodes; and an electrolyte contained in the container, wherein the separator is configured such that a stress caused at a specific compressed depth in the separator, which corresponds to 5% of the thickness of the negative electrode active material layer, is 0.5 MPa or more and 14 MPa or less. An electric storage apparatus includes a plurality of electric storage devices described above.
Abstract:
An electric storage device having a positive electrode, a negative electrode, a separator located between the positive electrode and the negative electrode, and a nonaqueous electrolyte. The positive electrode has a positive substrate layer, a positive composite layer containing a positive active material, and an undercoat layer located between the positive substrate layer and the positive composite layer. A density of the positive composite layer is 2.1 g/cm3 or more and 2.7 g/cm3 or less. The positive electrode has the rate of increase in sheet resistance after a solvent immersion test of 30% or less. The undercoat layer contains a binder selected from the group consisting of chitosan derivatives, cellulose derivatives and acrylic acid derivatives.
Abstract translation:具有正极,负极,位于正极和负极之间的隔膜的非蓄电装置以及非水电解质。 该正电极具有正的衬底层,含有正极活性材料的正性复合层,以及位于正性衬底层和正性复合层之间的底涂层。 正极复合层的密度为2.1g / cm 3以上且2.7g / cm 3以下。 正极在溶剂浸渍试验后的薄层电阻增加率为30%以下。 底涂层含有选自壳聚糖衍生物,纤维素衍生物和丙烯酸衍生物的粘合剂。
Abstract:
Provided is an electric storage device provided with: a positive electrode including a positive electrode substrate and a positive electrode mixture layer, the positive electrode mixture layer being formed on the positive electrode substrate and containing a positive electrode active material; a negative electrode including a negative electrode substrate and a negative electrode mixture layer, the negative electrode mixture layer being formed on the negative electrode substrate and containing a negative electrode active material; and a separator disposed between the positive electrode and the negative electrode. In the electric storage device, the separator yields a triple value of standard deviation of local air resistance, as measured within a 5-mm diameter circle, of at least 20 seconds/10 cc but not more than 350 seconds/10 cc.
Abstract:
An energy storage device includes a positive electrode and a negative electrode. The negative electrode includes graphite and non-graphitizable carbon, and a D50 particle size of the graphite at which a cumulative volume in a particle size distribution of a particle size reaches 50% is 2 μm or more. A ratio of a mass of the non-graphitizable carbon to a total amount of a mass of the graphite and a mass of the non-graphitizable carbon is 5% by mass or more and 45% by mass or less and a ratio of the D50 particle size of the graphite to a D50 particle size of the non-graphitizable carbon is 1.02 or less.
Abstract:
An energy storage device includes a positive electrode, a negative electrode, and an insulating layer arranged between these electrodes to electrically insulate these electrodes. The negative electrode includes a composite layer containing active material particles. The composite layer of the negative electrode, and the positive electrode are arranged to face each other across the insulating layer. The insulating layer contains electrically insulating particles, and is made porous by a gap between these particles. The composite layer of the negative electrode is made porous by a gap between the active material particles, and “−0.8≦Log B−Log A≦1.0” is satisfied in which in a pore distribution of the composite layer, a pore peak diameter is represented by A (μm), and in a pore distribution of the insulating layer, a peak diameter is represented by B (μm).
Abstract:
An energy storage device comprises a positive electrode, a negative electrode, a separator arranged between the positive electrode and the negative electrode, and a nonaqueous electrolyte. The negative electrode has a negative substrate layer, and a negative composite layer arranged on the surface of the negative substrate layer. The separator has a separator substrate layer. The negative composite layer contains a non-graphitizable carbon having a particle diameter D50 of 2.0 μm or more and 6.0 μm or less. A corrected negative electrode density, which is defined as a value obtained by dividing, by a thickness of the separator substrate layer, a value obtained by multiplying a density of the negative composite layer by a thickness of the negative composite layer, is 1.2 (g/cm3) or more and 5.1 (g/cm3) or less.
Abstract:
An electric storage device includes a case, an electrode assembly housed in the case and including a positive electrode plate and a negative electrode plate which are wound together while being isolated from each other, an external terminal arranged outside the case and a current collecting member arranged inside the case to electrically connect the electrode assembly with the external terminal. The current collecting member includes a first portion including a first end portion and a second end portion, and electrically connected to the external terminal, and a second portion extending out of the second end portion of the first portion and electrically connected to the electrode assembly. The second portion includes a base portion including a first end portion and a second end portion, the first end portion of the base portion being connected to the second end portion of the first portion, and a twisted portion.
Abstract:
An electric storage device includes a case, an electrode assembly housed in the case and including a positive electrode plate and a negative electrode plate which are wound together while being isolated from each other, an external terminal arranged outside the case and a current collecting member arranged inside the case to electrically connect the electrode assembly with the external terminal. The current collecting member includes a first portion including a first end portion and a second end portion, and electrically connected to the external terminal, and a second portion extending out of the second end portion of the first portion and electrically connected to the electrode assembly. The second portion includes a base portion including a first end portion and a second end portion, the first end portion of the base portion being connected to the second end portion of the first portion, and a twisted portion.